Переохлаждение в холодильной технике. Переохлаждение хладагента. Заправка кондиционера фреоном по переохлаждению

Под переохлаждением конденсата понимают понижение температуры конден­сата против температуры насыщенного пара, поступаю­щего в конденсатор. Выше отмечалось, что величина пе­реохлаждения конденсата определяется разностью тем­ператур t н -t к .

Переохлаждение конденсата приводит к заметному снижению экономичности установки, так как с пере­охлаждением конденсата увеличивается количество теп­ла, передаваемое в конденсаторе охлаждающей воде. Увеличение переохлаждения конденсата на 1°С вызы­вает перерасход топлива в установках без регенератив­ного подогрева питательной воды на 0,5%. При регене­ративном подогреве питательной воды перерасход топли­ва в установке получается несколько меньший. В современных установках при наличии конденсаторов регене­ративного типа переохлаждение конденсата при нор­мальных условиях работы конденсационной установки не превышает 0,5-1°С. Переохлаждение конденсата вызывается следующими причинами:

а) нарушением воздушной плотности вакуумной си­стемы и повышенными присосами воздуха;

б) высоким уровнем конденсата в конденсаторе;

в) излишним расходом охлаждающей воды через конденсатор;

г) конструктивными недостатками конденсатора.

Увеличение содержания воздуха в паровоздушной

смеси приводит к увеличению парциального давления воздуха и соответственно к снижению парциального дав­ления водяных паров по отношению к полному давлению смеси. Вследствие этого температура насыщенных водя­ных паров, а следовательно, и температура конденсата будет ниже, чем было до увеличения содержания возду­ха. Таким образом, одним из важных мероприятий, на­правленных на снижение переохлаждения конденсата, является обеспечение хорошей воздушной плотности ва­куумной системы турбоустановки.

При значительном повышении уровня конденсата в конденсаторе может получиться такое явление, что нижние ряды охлаждающих трубок будут омываться конденсатом, вследствие чего конденсат будет пере­охлаждаться. Поэтому надо следить за тем, чтобы уро­вень конденсата был всегда ниже нижнего ряда охлаж­дающих трубок. Лучшим средством предупреждения не­допустимого повышения уровня конденсата является устройство автоматического регулирования его в кон­денсаторе.

Излишний расход воды через конденсатор, особенно при низкой ее температуре, будет приводить к увеличе­нию вакуума в конденсаторе вследствие уменьшения парциального давлении водяных паров. Поэтому расход охлаждающей воды через конденсатор необходимо ре­гулировать в зависимости от паровой нагрузки на кон­денсатор и от температуры охлаждающей воды. При правильной регулировке расхода охлаждающей воды в конденсаторе будет поддерживаться экономический вакуум и переохлаждение конденсата не будет выходить за минимальное значение для данного конденсатора.

Переохлаждение конденсата может происходить вследствие конструктивных недостатков конденсатора. В некоторых конструкциях конденсаторов в результате тесного расположения охлаждающих трубок и неудач­ной разбивки их по трубным доскам создается большое паровое сопротивление, достигающее в отдельных слу­чаях 15-18 мм рт. ст. Большое паровое сопротивление конденсатора приводит к значительному снижению дав­ления над уровнем конденсата. Уменьшение давления смеси над уровнем конденсата происходит за счет уменьшения парциального давления водяных паров. Таким образом, температура конденсата получается значитель­но ниже температуры насыщенного пара, поступающего в конденсатор. В таких случаях для уменьшения пере­охлаждения конденсата необходимо идти на конструк­тивные переделки, а именно на удаление некоторой части охлаждающих трубок с целью устройства в труб­ном пучке коридоров и снижения парового сопротивле­ния конденсатора.

Следует иметь в виду, что удаление части охлаждаю­щих трубок и уменьшение вследствие этого поверхности охлаждения конденсатора приводит к увеличению удель­ной нагрузки конденсатора. Однако увеличение удель­ной паровой нагрузки обычно бывает вполне приемле­мым, так как конденсаторы старых конструкций имеют сравнительно низкую удельную паровую нагрузку.

Мы рассмотрели основные вопросы эксплуатации обо­рудования конденсационной установки паровой турбины. Из сказанного следует, что главное внимание при эксплуатации конденсационной установки должно быть обращено па поддержание экономического вакуума в конденсаторе и на обеспечение минимального пере­охлаждения конденсата. Эти два параметра в значи­тельной степени влияют па экономичность турбоуста­новки. С этой целью необходимо поддерживать хорошую воздушную плотность вакуумной системы турбоустанов­ки, обеспечивать нормальную работу воздухоудаляющих устройств, циркуляционных и конденсатных насосов, под­держивать трубки конденсатора чистыми, следить за во­дяной плотностью конденсатора, недопускать повышения присосов сырой воды, обеспечивать нормальную работу охлаждающих устройств. Имеющиеся на установке кон­трольно-измерительные приборы, автоматические регу­ляторы, сигнализирующие и регулирующие устройства позволяют обслуживающему персоналу вести наблюде­ние за состоянием оборудования и за режимом работы установки и поддерживать такие режимы работы, при которых обеспечивается высокоэкономичная и надежная эксплуатация установки.

19.10.2015

Степень переохлаждения жидкости, получаемой на выходе конденсатора, является важным показателем, который характеризует стабильную работу холодильного контура. Переохлаждением называют температурную разность между жидкостью и конденсацией при данном давлении.

При нормальном атмосферном давлении, конденсация воды имеет температурный показатель 100 градусов по Цельсию. Согласно законам физики, вода, которая 20 градусов, считается переохлажденной на 80 градусов по Цельсию.

Переохлаждение на выходе из теплообменника изменяется как разность между температурной жидкости и конденсации. Исходя из рисунка 2.5, переохлаждение будет равно 6 К или 38-32.

В конденсаторах с воздушным охлаждением показатель переохлаждения должен быть от 4 до 7 К. В случае если он имеет иную величину, то это говорит о нестабильной работе.

Взаимодействие конденсатора и вентилятора: перепад температур воздуха.

Нагнетаемый воздух вентилятором имеет показатель 25 градусов по Цельсию (рисунок 2.3). Он забирает тепло у фреона, за счет чего его температура меняется до 31 градуса.


На рисунке 2.4 изображено более детальное изменение:

Tae - температурная отметка воздуха, подаваемого в конденсатор;

Tas – воздух с новой температурой конденсатора после охлаждения;

Tk –с манометра показания о температуре конденсации;

Δθ – разность температурных показателей.

Вычисление температурного перепада в конденсаторе с воздушным охлаждением происходит по формуле:

Δθ =(tas — tae), где К имеет пределы 5–10 К. На графике это значение равно 6 К.

Разница перепада температур в точке D, то есть на выходе из конденсатора, в данном случае равняется 7 К, так как находиться в том же пределе. Температурный напор составляет 10-20 К, на рисунке это (tk- tae). Чаще всего значение данного показателя останавливается на отметке в 15 К, но в этом примере – 13 К.

Напомним, что VRF-системы (Variable Refrigerant Flow — системы с переменным расходом хладагента), являются сегодня самым динамично развивающимся классом систем кондиционирования воздуха. Мировой рост продаж систем класса VRF ежегодно увеличивается на 20-25 %, вытесняя с рынка конкурирующие варианты кондиционирования. Благодаря чему происходит этот рост?

Во-первых, благодаря широким возможностям систем Variable Refrigerant Flow: большой выбор наружных блоков — от мини-VRF до больших комбинаторных систем. Огромный выбор внутренних блоков. Длины трубопроводов — до 1000 м (рис. 1).

Во-вторых, благодаря высокой энергоэффективности систем. Инверторный привод компрессора, отсутствие промежуточных теплообменников (в отличие от водяных систем), индивидуальный расход хладагента — всё это обеспечивает минимальное энергопотребление.

В-третьих, положительную роль играет модульность конструкции. Нужная производительность системы набирается из отдельных модулей, что без сомнения очень удобно и повышает общую надёжность в целом.

Именно поэтому сегодня VRF-системы занимают как минимум 40 % мирового рынка систем центрального кондиционирования и эта доля с каждым годом растёт.

Система переохлаждения хладагента

Какая максимальная длина фреоновых трубопроводов может быть у сплит-системы кондиционирования? Для бытовых систем производительностью до 7 кВт холода она составляет 30 м. Для полупромышленного оборудования эта цифра может достигать 75 м (инверторный наружный блок). Для сплит-систем данное значение максимально, но для систем класса VRF максимальная длина трубопроводов (эквивалентная) может быть и значительно большей — до 190 м (суммарная — до 1000 м).

Очевидно, что VRF-системы принципиально отличаются от сплит-систем с точки зрения фреонового контура, и это позволяет им работать при больших длинах трубопроводов. Это отличие заключается в наличии специального устройства в наружном блоке, которое называется переохладитель хладагента или subcooler (рис. 2).

Прежде чем рассмотреть особенности работы систем VRF, давайте обратим внимание на схему фреонового контура сплит-систем и поймём, что происходит с хладагентом при больших длинах фреоновых трубопроводов.

Холодильный цикл сплит-систем

На рис. 3 изображён классический цикл фреона в контуре кондиционера в осях «давление-энтальпия». Причём это цикл для любых сплит-систем на фреоне R410a, то есть от производительности кондиционера или марки вид данной диаграммы не зависит.

Начнём с точки D, с начальными параметрами в которой (температура 75 °C, давление 27,2 бара) фреон попадает в конденсатор наружного блока. Фреон в данный момент — это перегретый газ, который сначала остывает до температуры насыщения (около 45 °C), затем начинает конденсироваться и в точке А полностью переходит из состояния газа в жидкость. Далее происходит переохлаждение жидкости до точки А (температура 40 °C). Считается, что оптимальная величина переохлаждения равна 5 °C.

После теплообменника наружного блока хладагент поступает на устройство дросселирования в наружном блоке — терморегулирующий вентиль либо капиллярную трубку, и его параметры меняются до точки B (температура 5 °C, давление 9,3 бара). Обратим внимание, что точка В находится в зоне смеси жидкости и газа (рис. 3). Следовательно, после дросселирования в жидкостный трубопровод поступает именно смесь жидкости и газа. Чем больше величина переохлаждения фреона в конденсаторе, тем больше доля жидкого фреона поступает во внутренний блок, тем выше КПД кондиционера.

На рис. 3 обозначены следующие процессы: В-С — процесс кипения фреона во внутреннем блоке с постоянной температурой около 5 °C; С-С — перегрев фреона до +10 °C; С -L — процесс всасывания хладагента в компрессор (происходят потери давления в газовом трубопроводе и элементах фреонового контура от теплообменника внутреннего блока до компрессора); L-M — процесс сжатия газообразного фреона в компрессоре с повышением давления и температуры; М-D — процесс нагнетания газообразного хладагента от компрессора до конденсатора.

Потери давления в системе зависят от скорости фреона V и гидравлической характеристики сети:

Что будет происходить с кондиционером при увеличении гидравлической характеристики сети (вследствие повышенной длины или большого количества местных сопротивлений)? Повышенные потери давления в газовом трубопроводе приведут к падению давления на входе в компрессор. Компрессор начнёт захватывать хладагент меньшего давления и, значит, меньшей плотности. Расход хладагента упадёт. На выходе компрессор будет выдавать меньшее давление и, соответственно, упадёт температура конденсации. Пониженная температура конденсации приведёт к пониженной температуре испарения и обмерзанию газового трубопровода.

Если повышенные потери давления будут происходить на жидкостном трубопроводе, то процесс даже более интересный: так как мы выяснили, что в жидкостном трубопроводе фреон находится в насыщенном состоянии, а точнее, в виде смеси жидкости и пузырьков газа, то любые потери давления будут приводить к небольшому вскипанию хладагента и увеличению доли газа.

Последнее повлечёт за собой резкое увеличение объёма парогазовой смеси и увеличению скорости движения по жидкостному трубопроводу. Повышенная скорость движения снова вызовет дополнительную потерю давления, процесс станет «лавинообразным».

На рис. 4 приведён условный график удельных потерь давления в зависимости от скорости движения хладагента в трубопроводе.

Если, например, потери давления при длине трубопроводов 15 м составляют 400 Па, то при увеличении длины трубопроводов в два раза (до 30 м) потери увеличиваются не в два раза (до 800 Па), а в семь раз — до 2800 Па.

Поэтому простое увеличение длины трубопроводов в два раза относительно стандартных длин для сплит-системы с On-Off-компрессором фатально. Расход хладагента упадёт в несколько раз, компрессор будет перегреваться и очень скоро выйдет из строя.

Холодильный цикл VRF-систем с переохладителем фреона

На рис. 5 схематично изображён принцип работы переохладителя хладагента. На рис. 6 изображён тот же холодильный цикл на диаграмме «давление-энтальпия». Рассмотрим подробно, что же у нас происходит с хладагентом при работе системы Variable Refrigerant Flow.

1-2: Жидкий хладагент после конденсатора в точке 1 делится на два потока. Бóльшая часть проходит через противоточный теплообменник. В нём происходит охлаждение основной части хладагента до +15…+25 °C (в зависимости от его эффективности), которая далее поступает в жидкостный трубопровод (точка 2).

1-5: Вторая часть потока жидкого хладагента из точки 1 проходит через ТРВ, его температура понижается до +5 °C (точка 5), поступает на тот же противоточный теплообменник. В последнем происходит его кипение и охлаждение основной части хладагента. После кипения газообразный фреон сразу поступает на всасывание компрессора (точка 7).

2-3: На выходе из наружного блока (точка 2) жидкий хладагент проходит через трубопроводы к внутренним блокам. При этом теплообмена с окружающей средой практически не происходит, а вот часть давления теряется (точка 3). У некоторых производителей дросселирование производится частично в наружном блоке системы VRF, поэтому давление в точке 2 меньше, чем на нашем графике.

3-4: Потери давления хладагента в электронном регулирующем вентиле (ЭРВ), который располагается перед каждым внутренним блоком.

4-6: Испарение хладагента во внутреннем блоке.

6-7: Потери давления хладагента при его возврате в наружный блок по газовому трубопроводу.

7-8: Сжатие газообразного хладагента в компрессоре.

8-1: Охлаждение хладагента в теплообменнике наружного блока и его конденсация.

Рассмотрим подробнее участок от точки 1 до точки 5. В системах VRF без переохладителя хладагента процесс из точки 1 сразу переходит в точку 5 (по синей линии рис. 6). Удельная величина производительности хладагента (поступающего к внутренним блокам) пропорциональна длине линии 5-6. В системах, где переохладитель присутствует, полезная производительность хладагента пропорциональна линии 4-6. Сравнивая длины линии 5-6 и 4-6, становится понятной работа переохладителя фреона. Повышение эффективности охлаждения циркулирующего хладагента происходит как минимум на 25 %. Но это не означает, что производительность всей системы стала больше на 25 %. Дело в том, что часть хладагента не поступила к внутренним блокам, а сразу ушла на всасывание компрессора (линия 1-5-6).

Именно в этом состоит баланс: на какую величину повысилась производительность фреона, поступающего к внутренним блокам, на столько же уменьшилась производительность системы в целом.

Так в чём тогда смысл применения переохладителя хладагента, если общую производительность системы VRF он не увеличивает? Чтобы ответить на этот вопрос, снова вернёмся к рис. 1. Смысл применения переохладителя — снижение потерь на длинных трассах систем Variable Refrigerant Flow.

Дело в том, что все характеристики VRFсистем приводятся при стандартной длине трубопроводов 7,5 м. То есть сравнивать VRF-системы разных производителей по данным каталога не совсем корректно, поскольку реальные длины трубопроводов будут гораздо больше — как правило, от 40 до 150 м. Чем больше отличается длина трубопровода от стандартной, тем больше потери давления в системе, тем больше происходит вскипание хладагента в жидкостных трубопроводах. Потери производительности наружного блока по длине приводятся на специальных графиках в сервис-мануалах (рис. 7). Именно по этим графикам необходимо сравнивать эффективность работы систем при наличии переохладителя хладагента и при его отсутствии. Потери производительности VRF-систем без переохладителя на длинных трассах составляют до 30 %.

Выводы

1. Переохладитель хладагента является важнейшим элементом для работы VRF систем. Его функциями являются, во-первых, увеличение энергетической ёмкости хладагента, поступающего к внутренним блокам, во-вторых, уменьшение потерь давления в системе на длинных трассах.

2. Не все производители систем VRF снабжают свои системы переохладителем хладагента. Особенно часто исключают переохладитель ОЕМ-бренды для удешевления конструкции.

Недозаправка и перезаправка системы хладагентом

Как показывает статистика, основной причиной аномальной работы кондиционеров и выхода из строя компрессоров, является неправильная заправка холодильного контура хладагентом. Нехватка хладагента в контуре может объясняться случайными утечками. В то же время избыточная заправка, как правило, является следствием ошибочных действий персонала, вызванных его недостаточной квалификацией. Для систем, в которых в качестве дросселирующего устройства используется терморегулирующий вентиль (ТРВ), лучшим индикатором, указывающим на нормальную величину заправки хладагентом, является переохлаждение. Слабое переохлаждение говорит о том, что заправка недостаточна, сильное указывает на избыток хладагента. Заправка может считаться нормальной, когда температура переохлаждения жидкости на выходе из конденсатора поддерживается в пределах 10-12 градусов Цельсия при температуре воздуха на входе в испаритель, близкой к номинальным условиям эксплуатации.

Температура переохлаждения Тп определяется как разность:
Тп =Тк – Тф
Тк – температура конденсации, считываемая с манометра ВД.
Тф – температура фреона (трубы) на выходе из конденсатора.

1. Нехватка хладагента. Симптомы.

Недостаток фреона будет ощущаться в каждом элементе контура, но особенно этот недостаток чувствуется в испарителе, конденсаторе и жидкостной линии. В результате недостаточного количества жидкости испаритель слабо заполнен фреоном и холодопроизводительность низкая. Поскольку жидкости в испарителе недостаточно, количество производимого там пара сильно падает. Так как объемная производительность компрессора превышает количество пара, поступающего из испарителя, давление в нем аномально падает. Падение давления испарения приводит к снижению температуры испарения. Температура испарения может опуститься до минусовой отметки, в результате чего произойдет обмерзание входной трубки и испарителя, при этом перегрев пара будет очень значительным.

Температура перегрева Т перегрева определяется как разность:
Т перегрева = Т ф.и. – Т всас.
Т ф.и. - температура фреона (трубы) на выходе из испарителя.
Т всас. - температура всасывания, считываемая с манометра НД.
Нормальный перегрев 4-7 градусов Цельсия.

При значительном недостатке фреона перегрев может достигать 12–14 о С и, соответственно, температура на входе в компрессор также возрастет. А поскольку охлаждение электрических двигателей герметичных компрессоров осуществляется при помощи всасываемых паров, то в этом случае компрессор будет аномально перегреваться и может выйти из строя. Вследствие повышения температуры паров на линии всасывания температура пара в магистрали нагнетания также будет повышенной. Поскольку в контуре будет ощущаться нехватка хладагента, точно также его будет недостаточно и в зоне переохлаждения.

    Таким образом, основные признаки нехватки фреона:
  • Низкая холодопроизводительность
  • Низкое давление испарения
  • Высокий перегрев
  • Недостаточное переохлаждение (менее 10 градусов Цельсия)

Необходимо отметить, что в установках с капиллярными трубками в качестве дросселирующего устройства, переохлаждение не может рассматриваться как определяющий показатель для оценки правильности величины заправки хладагентом.

2. Чрезмерная заправка. Симптомы.

В системах с ТРВ в качестве дросселирующего устройства, жидкость не может попасть в испаритель, поэтому излишки хладагента находятся в конденсаторе. Аномально высокий уровень жидкости в конденсаторе снижает поверхность теплообмена, охлаждение газа поступающего в конденсатор, ухудшается, что приводит к повышению температуры насыщенных паров и росту давления конденсации. С другой стороны, жидкость внизу конденсатора остается в контакте с наружным воздухом гораздо дольше, и это приводит к увеличению зоны переохлаждения. Поскольку давление конденсации увеличено, а покидающая конденсатор жидкость отлично охлаждается, переохлаждение, замеренное на выходе из конденсатора, будет высоким. Из-за повышенного давления конденсации происходит снижение массового расхода через компрессор и падение холодопроизводительности. В результате, давление испарения также будет расти. Ввиду того, что чрезмерная заправка приводит к снижению массового расхода паров, охлаждение электрического двигателя компрессора будет ухудшаться. Более того, из-за повышенного давления конденсации, растет ток электрического двигателя компрессора. Ухудшение охлаждения и увеличение потребляемого тока ведет к перегреву электрического двигателя и в конечном итоге – выходу из строя компрессор.

    Итог. Основные признаки перезаправки хладагентом:
  • Упала хладопроизводительность
  • Возросло давление испарения
  • Возросло давление конденсации
  • Повышенное переохлаждение (более 7 о С)

В системах с капиллярными трубками в качестве дросселирующего устройства излишек хладагента может попасть в компрессор, что приведет к гидроударам и, в конечном итоге, к выходу компрессора из строя.

Одна из самых больших сложностей в работе ремонтника заключается в том, что он не может видеть процессов, происходящих внутри трубопроводов и в холодильном контуре. Тем не менее, измерение величины переохлаждения может позволить получить относительно точную картину поведения хладагента внутри контура.

Заметим, что большинство конструкторов выбирают размеры конденсаторов с воздушным охлаждением таким образом, чтобы обеспечить переохлаждение на выходе из конденсатора в диапазоне от 4 до 7 К. Рассмотрим, что происходит в конденсаторе, если величина переохлаждения выходит за пределы этого диапазона.

А) Пониженное переохлаждение (как правило, меньше 4 К).

Рис. 2.6

На рис. 2.6 приведено различие в состоянии хладагента внутри конденсатора при нормальном и аномальном переохлаждении. Температура в точках tв=tc=te=38°С = температуре конденсации tк. Замер температуры в точке D дает значение td=35 °С, переохлаждение 3 К.

Пояснение. Когда холодильный контур работает нормально, последние молекулы пара конденсируются в точке С. Далее жидкость продолжает охлаждаться и трубопровод по всей длине (зона C-D) заполняется жидкой фазой, что позволяет добиваться нормальной величины переохлаждения (например, 6 К).

В случае нехватки хладагента в конденсаторе, зона C-D залита жидкостью не полностью, имеется только небольшой участок этой зоны, полностью занятый жидкостью (зона Е-D), и его длины недостаточно, чтобы обеспечить нормальное переохлаждение.

В результате, при измерении переохлаждения в точке D, вы обязательно получите его значение ниже нормального (в примере на рисунка 2.6 — 3 К).

И чем меньше будет хладагента в установке, тем меньше будет его жидкой фазы на выходе из конденсатора и тем меньше будет его степень переохлаждения.

В пределе, при значительной нехватке хладагента в контуре холодильной установки, на выходе из конденсатора будет находиться парожидкостная смесь, температура которой будет равна температуре конденсации, то есть переохлаждение будет равно 0 К (смотри рисунок 2.7).


Рис. 2.7

tв=td=tk=38°С. Значение переохлаждения П/О = 38—38=0 К.

Таким образом, недостаточная заправка хладагента всегда приводит к уменьшению переохлаждения.

Отсюда следует, что грамотный ремонтник не будет без оглядки добавлять хладагент в установку, не убедившись в отсутствии утечек и не удостоверившись, что переохлаждение аномально низкое!

Отметим, что по мере дозаправки хладагента в контур, уровень жидкости в нижней части конденсатора будет повышаться, вызывая увеличение переохлаждения.

Перейдем теперь к рассмотрению противоположного явления, то есть слишком большого переохлаждения.

Б) Повышенное переохлаждение (как правило, больше 7 К).


Рис. 2.8

tв=te=tk= 38°С. td = 29°С, следовательно переохлаждение П/О=38-29=9 К.

Пояснение. Выше мы убедились, что недостаток хладагента в контуре приводит к уменьшению переохлаждения. С другой стороны, чрезмерное количество хладагента будет накапливаться в нижней части конденсатора.

В этом случае длина зоны конденсатора, полностью залитая жидкостью, увеличивается и может занимать весь участок E-D. Количество жидкости, находящееся в контакте с охлаждающим воздухом, возрастает и величина переохлаждения, следовательно, тоже становится больше (в примере на рис. 2.8 П/О = 9 К).

В заключение укажем, что измерения величины переохлаждения являются идеальными для диагностики процесса функционирования классической холодильной установки.

В ходе детального анализа типовых неисправностей мы увидим как в каждом конкретном случае безошибочно интерпретировать данные этих измерений.

Слишком малое переохлаждение (менее 4 К) свидетельствует о недостатке хладагента в конденсаторе. Повышенное переохлаждение (более 7 К) указывает на избыток хладагента в конденсаторе.

2.4. УПРАЖНЕНИЕ

Выберите из 4-х вариантов конструкций конденсатора с воздушным охлаждением, представленных на рис. 2.9, тот, который, по вашему мнению, является наилучшим. Объясните почему?


Рис. 2.9

Под действием силы тяжести жидкость накапливается в нижней части конденсатора, поэтому вход паров в конденсатор всегда должен располагаться сверху. Следовательно, варианты 2 и 4 по меньшей мере представляют собой странное решение, которое не будет работоспособным.

Разница между вариантами 1 и 3 заключается, главным образом, в температуре воздуха, который обдувает зону переохлаждения. В 1-м варианте воздух, который обеспечивает переохлаждение, поступает в зону переохлаждения уже подогретым, поскольку он прошел через конденсатор. Наиболее удачной следует считать конструкцию 3-го варианта, так как в ней реализован теплообмен между хладагентом и воздухом по принципу противотока. Этот вариант имеет наилучшие характеристики теплообмена и конструкции установки в целом.

Подумайте об этом, если вы еще не решили, какое направление прохождения охлаждающего воздуха (или воды) через конденсатор вам выбрать.

  • Влияние температуры и давления на состояние хладогенов
  • Переохлаждение в конденсаторах с воздушным охлаждением
  • Анализ случаев аномального переохлаждения