Экспериментах по квантовому перемещению. Квантовая телепортация - еще один вызов здравому смыслу. Экспериментальное подтверждение квантовой телепортации

Ключевое исследование, доказывающее принципиальную возможность квантовой телепортации фотонов.

Это необходимо для фундаментального физического обоснования принципиальной возможности дистантной трансляции генетико-метаболической информации с помощью поляризованных (спинирующих) фотонов. Доказательство, применимое как для трансляции in vitro (с помощью лазера), так и in vivo, т.е. в самой биосистеме между клетками.

Экспериментальная квантовая телепортация

Экспериментально продемонстрирована квантовая телепортация – передача и восстановление на любой произвольной дистанции состояния квантовой системы. В процессе телепортации первичный фотон поляризуется, и эта поляризация является передаваемым дистантно состоянием. При этом пара спутанных фотонов является объектом измерения, в котором второй фотон спутанной пары может находиться произвольно далеко от начального. Квантовая телепортация будет ключевым элементом в сетях квантового компьютинга.

Мечта о телепортации – это мечта о способности к путешествию путем простого появления на некотором расстоянии. Объект телепортации может быть полностью охарактеризован по своим свойствам классической физикой путем измерений. Для того, чтобы на некотором расстоянии сделать копию этого объекта нет необходимости передавать туда его части или фрагменты. Все, что необходимо для такой передачи – это снятая с объекта полная информация о нем, которая может использоваться для воссоздания объекта. Но насколько точна должна быть эта информация для генерации точной копии оригинала? Что если эти части и фрагменты будут представлены электронами, атомами и молекулами? Что произойдет с их индивидуальными квантовыми свойствами, которые, в соответствии с принципом неопределенности Гейзенберга, не могут быть измерены с произвольной точностью?
Беннет и др. доказали, что возможна передача квантового состояния одной частицы на другую, т.е. процесс квантовой телепортации, которая не обеспечивает передачу любой информации об этом состоянии в процессе передачи. Эта трудность может быть устранена, если использовать принцип спутывания (entanglement), как особого свойства квантовой механики . Оно отображает корреляции между квантовыми системами существенно более строго, чем это могут делать любые классические корреляции. Возможность передачи квантовой информации – одна из базовых структур волновой квантовой коммуникации и квантового компьютинга . Хотя и существует быстрый прогресс в описании квантового информационного процессинга, трудности в управлении квантовыми системами не позволяют делать адекватные подвижки в экспериментальной реализации новых предложений. Не обещая быстрых успехов в квантовой криптографии (первичные соображения по передаче секретных данных), ранее мы только успешно доказали возможность квантового плотного кодирования , как пути квантово-механического усиления сжатия данных. Основная причина такого медленного экспериментального прогресса в том, что хотя и существуют методы генерации пар спутанных фотонов , спутанные состояния для атомов только начинают изучаться и они не более возможны, чем спутанные состояния для двух квантов.
Здесь мы публикуем первую экспериментальную проверку квантовой телепортации. Путем создания пар спутанных фотонов с помощью процесса параметрической даун-конверсии, а также путем двухфотонной интерферометрии для анализа процесса спутывания, мы можем передать квантовые свойства (в нашем случае состояние поляризации) с одного фотона на другой. Методы, развитые в этом эксперименте, будут иметь большое значение как для исследований в области квантовой коммуникации, так и для будущих экспериментов по фундаментальным основам квантовой механики.

А. ШИШЛОВА. По материалам журналов "Nature" и "Science news".

В тонких физических экспериментах удалось, кажется, сделать то, что самые смелые фантасты считали не более чем нереалистичной фантастикой: исследуя одну из связанных когда-то частиц, можно мгновенно (со сверхсветовой скоростью!) с любых расстояний получать информацию о состоянии другой частицы.

Герои научно-фантастических фильмов и романов давно освоили телепортацию - удобный способ мгновенного перемещения во времени и в пространстве. Что же касается реальной жизни, то здесь подобное продолжает оставаться лишь мечтой.

Тем не менее еще в 1935 году Альберт Эйнштейн совместно со своими коллегами Б. Подольским и Н. Розеном предложил эксперимент по телепортации если не вещества, то информации. Этот способ сверхсветовой связи получил название "Парадокс ЭПР".

Суть парадокса состоит в следующем. Есть две частицы, которые какое-то время взаимодействуют, образуя единую систему. С позиций квантовой механики эту связанную систему можно описать некоей волновой функцией. Когда взаимодействие прекращается и частицы разлетаются очень далеко, их по-прежнему будет описывать та же функция. Но состояние каждой отдельной частицы неизвестно в принципе: это вытекает из соотношения неопределенностей. И только когда одна из них попадает в приемник, регистрирующий ее параметры, у другой появляются (именно появляются, а не становятся известными!) соответствующие характеристики. То есть возможна мгновенная "пересылка" квантового состояния частицы на неограниченно большое расстояние. Телепортации самой частицы, передачи массы при этом не происходит.

Похожим образом ведет себя разорвавшийся на две части снаряд: если до взрыва он был неподвижен, суммарный импульс его осколков равен нулю. "Поймав" один осколок и измерив его импульс, можно мгновенно назвать величину импульса второго осколка, как бы далеко он ни улетел.

Сегодня по крайней мере две научные группы - австрийские исследователи из университета в Инсбруке и итальянские из университета "La Sapienza" в Риме - утверждают, что им удалось осуществить телепортацию характеристик фотона в лабораторных условиях.

Эксперименты в Инсбруке передавали "послания" в виде поляризации фотона ультрафиолетового излучения. Этот фотон взаимодействовал в оптическом смесителе с одним из пары связанных фотонов. Между ними в свою очередь возникала квантово-механическая связь, приводящая к поляризации новой пары. Таким образом экспериментаторы добились очень интересного результата: они научились связывать фотоны, не имеющие общего происхождения. Это открывает возможность для проведения целого класса принципиально новых экспериментов.

В результате измерения второй фотон первоначальной связанной пары также приобретал некоторую фиксированную поляризацию: копия первоначального состояния "фотона-посланника" передавалась удаленному фотону. Наиболее сложно было доказать, что квантовое состояние действительно телепортировано: для этого необходимо точно знать, как установлены детекторы при измерении общей поляризации, и потребовалось тщательно синхронизовать их.

Вместо того чтобы использовать отдельный "фотон-посланник", итальянские исследователи предложили рассматривать одновременно две характеристики каждой связанной частицы: поляризацию и направление движения. Это позволяет теоретически описывать их как отдельные частицы и в то же самое время, проводя измерения только с первой частицей, получать характеристики второй, не трогая ее, - осуществлять телепортацию.

Достигнув успехов в телепортации фотонов, экспериментаторы уже планируют работы с другими частицами - электронами, атомами и даже ионами. Это позволит передавать квантовое состояние от короткоживущей частицы к более стабильной. Таким способом можно будет создавать запоминающие устройства, где информация, принесенная фотонами, хранилась бы на ионах, изолированных от окружающей среды.

После создания надежных методов квантовой телепортации возникнут реальные предпосылки для создания квантовых вычислительных систем (см. "Наука и жизнь" № 6, 1996 г.). Телепортация обеспечит надежную передачу и хранение информации на фоне мощных помех, когда все другие способы оказываются неэффективными, и может быть использована для связи между несколькими квантовыми компьютерами. Кроме того, и сами разработанные исследователями методы имеют огромное значение для будущих экспериментов по квантовой механике, для проверки и уточнения целого ряда современных физических теорий.

На сайте журнала Nature, 9 августа вышла китайских учёных, которым удалось осуществить квантовую телепортацию на расстояние около 97 км. Это новый рекорд, хотя в arXiv.org ешё с 17 мая лежит пока нигде не опубликованная другой группы, которая сообщает об удачных экспериментах по телепортации на расстояние около 143 км.

Несмотря на то, что явление квантовой телепортации изучается уже довольно давно, у людей, далёких от науки, отсутствует понимание того, что же это такое. Попробую развеять некоторые мифы, связанные с этой частью науки.

Миф 1: квантовая телепортация теоретически позволяет телепортировать любой объект.

На самом деле, при квантовой телепортации передаются не физические объекты, а некая информация, записанная при помощи квантовых состояний объектов. Обычно этим состоянием является поляризация фотонов. Как известно, фотон может иметь две различные поляризации: например, горизонтальную и вертикальную. Их можно использовать как переносчики побитовой информации: скажем, 0 будет соответствовать горизонтальной поляризации, а 1 - вертикальной. Тогда передача состояния одного фотона другому обеспечит и передачу информации.

В случае квантовой телепортации передача данных происходит следующим образом. Вначале создаётся пара так называемых сцепленных фотонов. Это означает, что их состояния оказываются в некотором смысле связанными: если у одного при измерении поляризация окажется горизонтальной, то у другого всегда будет вертикальной и наоборот, при чём и тот, и другой вариант возникает с одинаковой вероятностью. Затем эти фотоны разносятся: один остаётся у источника сообщения, а другой уносится его приёмником.

Когда источник хочет передать своё сообщение, он связывает свой фотон с ещё одним фотоном, состояние (то есть поляризация) которого точно известно, а затем производит измерение поляризации обоих своих фотонов. В этот момент согласованным образом меняется состояние и фотона, находящегося у приёмника. Измерив его поляризацию и узнав по другим каналам связи результаты измерений фотонов источника, приёмник может точно установит, какой бит информации был передан.

Миф 2: с помощью квантовой телепортации можно передавать информацию со скоростью, превышающей скорость света.

Действительно, согласно современным представлениям передача состояний между сцепленными фотонами происходит мгновенно, таким образом, может возникнуть ощущение, что и информация передаётся мгновенно. Это, однако, не так, поскольку хотя состояние и было передано, прочитать его, расшифровав послание, можно только после передачи дополнительной информации о том, каковы же поляризации двух фотонов, находящихся у источника. Эта дополнительная информация передаётся по классическим каналам связи и скорость её передачи превышать скорость света не может.

Миф 3: получается, что квантовая телепортация совершенно неинтересна.

Конечно, на практике оказывается, что процесс квантовой телепортации, возможно, не так захватывающ, как это может показаться по его названию, однако и он может получить важное практическое применение. В первую очередь, это безопасная передача данных. Всегда можно перехватить сообщение, посланное по классическим каналам связи, однако воспользоваться им сможет только тот, у кого находится второй сцепленный фотон. Все остальные прочитать сообщение просто не смогут. К сожалению, пока до реального использования этого эффекта далеко, на данном этапе идут лишь научные эксперименты, требующие достаточно сложной аппаратуры.

Если вас заинтересовала эта тема, возможно, вам будет также интересно почитать про то, что

Квантовая телепортация – одно из наиболее интересных и парадоксальных проявлений квантовой природы материи, вызывающее в последние годы огромный интерес специалистов и широкой публики. Термин телепортация взят из научной фантастики, однако в настоящее время широко используется в научной литературе. Квантовая телепортация означает мгновенный перенос квантового состояния из одной точки пространства в другую, удаленную на большое расстояние.

ЭПР-парадокс

В период активного развития квантовой теории, в 1935 году, в знаменитой работе Альберта Эйнштейна, Бориса Подольского и Натана Розена «Может ли квантово-механическое описание реальности быть полным?» был сформулирован так называемый ЭПР-парадокс (парадокс Эйнштейна-Подольского-Розена).

В основе парадоксе лежит вопрос о том, может ли Вселенная быть разложена на отдельно существующие «элементы реальности» так, что каждый из этих элементов имеет своё математическое описание.

Авторы показали, что из квантовой теории следует: если есть две частицы A и B с общим прошлым (разлетевшиеся после столкновения или образовавшиеся при распаде некоторой частицы), то состояние частицы B зависит от состояния частицы A и эта зависимость должна проявляться мгновенно и на любом расстоянии. Такие частицы называют ЭПР-парой и говорят, что они находятся в «запутанном» состоянии.

В 1980 году Алан Аспект экспериментально показал, что в квантовом мире ЭПР-парадокс действительно имеет место. Специальные измерения состояния ЭПР-частиц A и B показали, что ЭПР-пара не просто связана общим прошлым, но частица B каким-то образом мгновенно «узнает» о том, как была измерена частица A (какую ее характеристику измеряли) и какой получился результат.

В 1993 году Чарльз Беннет и его коллеги придумали, как можно использовать замечательные свойства ЭПР-пар: они изобрели способ переноса квантового состояния объекта на другой квантовый объект с помощью ЭПР-пары и назвали этот способ квантовой телепортацией. А в 1997 году группа экспериментаторов под руководством Антона Цайлингера впервые осуществила квантовую телепортацию состояния фотона.

Экспериментальное подтверждение квантовой телепортации

Явление квантовой телепортации - передачи квантовой информации (например, направления спина частицы или поляризации фотона) на расстояние от одного носителя другому - уже наблюдалось на практике в случае двух фотонов, фотонов и группы атомов, а также двух атомов, посредником между которыми служил третий. Однако ни один из предложенных способов не годился для практического использования.

Наиболее реалистичной и легко реализуемой на этом фоне выглядит схема, предложенная специалистами из Университета Мэриленда (США) в 2008 году. Под руководством Кристофера Монро ученым удалось осуществить перемещение квантовой информации между двумя заряженными частицами (ионами иттербия), расположенными в метре друг от друга, причем показатель надежности доставки превысил 90 процентов. Каждый из них поместили в вакуум и удерживали на месте с помощью электрического поля. Затем с помощью сверхбыстрого лазерного импульса их заставили одновременно испустить фотоны, благодаря взаимодействию которых частицы вступили в состояние так называемой квантовой запутанности, и «атом В приобрел свойства атома А, несмотря на то, что они находились в разных камерах на расстоянии метра друг от друга».

«На основе нашей системы можно сконструировать крупномасштабный "квантовый повторитель", который будет использоваться для передачи информации на большие расстояния», - подытожил полученные результаты Кристофер Монро.

Наземная оптическая станция
Европейского космического агентства
на о. Тенерифе – место приема сигнала


В 2012 году ученые-физики из Венского университета и Австрийской академии наук успешно осуществили квантовую телепортацию на рекордное расстояние в 143 км - между двумя островами Канарского архипелага - Ла Пальма и Тенерифе. Предыдущий рекорд был поставлен за несколько месяцев до этого китайскими учеными, осуществившими телепортацию квантового состояния на 97 км. Специалисты уверены, что данные эксперименты позволят создать в будущем сеть спутниковой квантовой связи.

Эксперимент, проведенный международной командой ученых под руководством австрийского физика Антона Цайлингера, закладывает фундамент для всемирной информационной сети, в которой квантово-механические эффекты используются для того, чтобы сделать обмен сообщениями более безопасным, и обеспечить намного более эффективное выполнение некоторых типов вычислений. В этом «квантовом интернете» квантовая телепортация станет ключевым протоколом связи между квантовыми компьютерами.

В этом эксперименте квантовые состояния - но не материя или энергия – передаются на расстояние, которое, в принципе, может быть сколь угодно большим. Процесс может работать даже в том случае, если местоположение получателя неизвестно. Квантовая телепортация может использоваться как для передачи сообщений, так и для выполнения операций квантовыми компьютерами. Для реализации подобных задач необходимо обеспечить надежный способ передачи фотонов на большие дистанции, при котором их хрупкое квантовое состояние будет оставаться неизменным.

Перспективы применения квантовой телепортации

В различных странах обсуждаются программы по применению эффекта квантовой телепортации для создания квантовых оптических компьютеров, где носителями информации будут фотоны. Первые электронные компьютеры потребляли десятки киловатт энергии. Скорость работы квантовых компьютеров и объемы информации будут на десятки порядков превосходить таковые у существующих компьютеров. В будущем сети квантовой телепортации получат такое же распространение, как современные телекоммуникационные сети. Кстати, квантовые вирусы будут гораздо опаснее нынешних сетевых, так как после своей телепортации они смогут существовать вне компьютера. Квантовые компьютеры будут реализовывать «холодные» вычисления, работая практически без затрат энергии. Ведь трение, ведущее к бесполезному расходованию энергии, – понятие макроскопическое. В квантовом мире главный вредитель – шум, исходящий из некоррелированного взаимодействия объектов друг с другом.

К настоящему времени квантовая информатика обрела все признаки точной науки, включая систему определений, постулатов и строгих теорем. К числу последних относится, в частности, теорема о невозможности клонирования кубита*, строго доказанная с применением теории унитарного оператора квантовой эволюции. То есть невозможно, получив полную информацию о квантовом объекте A (изначально его состояние неизвестно), создать второй, точно такой же, объект, не разрушив первый. Дело в том, что создание двух кубитов – абсолютных копий друг друга – приводит к противоречию, которое можно было бы назвать парадоксом квантовых близнецов. Однако и без того ясно, что создание двух электронов в одном и том же квантовом состоянии невозможно в силу ограничения, накладываемого принципом Паули. Парадокс близнецов не возникает, если при клонировании снабжать копии отличительными признаками: пространственно-временными, фазовыми и др. Тогда генерацию лазерного излучения можно понимать как процесс клонирования фотона-затравки, попавшего в среду с оптическим усилением. Если же к квантовому копированию подходить строго, то рождение клона должно сопровождаться уничтожением оригинала. А это и есть телепортация.

______________________

* Кубит - «квантовый бит», единица квантовой информации, в которой хранится не дискретное состояние «0» или «1», а их суперпозиция - наложение состояний, которые с классической точки зрения не могут быть реализованы одновременно.

О квантовой природе человека

Человек – это не только то, что мы видим, а несравненно большее – то, что слышим, чувствуем, ощущаем. Все тело человека пронизано квантовой энергией, составляющей интеллектуальную сеть, коллективный разум не только мозга, но и остальных пятидесяти триллионов клеток организма, мгновенно реагирующая на малейшие проявления мыслей и эмоций, дающая возможность постоянным изменениям тонких вибраций.

Физика говорит, что основная ткань природы находится на квантовом уровне, гораздо глубже уровня атомов и молекул, это фундамент строительства. Квант – основная единица материи или энергии, в десятки миллионов раз меньше самого маленького атома. На этом уровне материя и энергия становятся равнозначными. Все кванты состоят из невидимых колебаний флуктуаций света – призраков энергии, – готовых принять физическую форму.

Человеческое тело – это вначале интенсивные, но невидимые колебания, называемые квантовыми флуктуациями, а уж потом объединенные в импульсы энергии и частицы материи. Квантовое тело является фундаментальной основой всего, из чего мы состоим: мыслей, эмоций, протеинов, клеток, органов, – в общем, всех видимых и невидимых компонентов.

На квантовом уровне тело посылает всевозможные виды невидимых сигналов, ожидая, что мы их примем. Все процессы и органы в нашем теле имеют свой квантовый эквивалент. Наше сознание способно обнаружить тонкие вибрации благодаря невероятной чувствительности своей нервной системы, которая принимает, передает и затем усиливает их таким образом, что наши органы чувств начинают воспринимать эти сигналы. И мы относим все это к интуиции.

Мы все склонны рассматривать свои тела как застывшие скульптуры – жесткие, неподвижные материальные объекты – в это время как на самом деле они более похожи на реки, постоянно меняющие рисунок нашего интеллекта. Каждый год 98 % атомов вашего организма заменяются новыми. Этот поток изменений контролируется на квантовом уровне системой тело – сознание.

На квантовом уровне ни одна часть тела не живет в отрыве от остальных. Когда человек счастлив, химические вещества, выделяемые мозгом, «путешествуют» по всему телу, сообщая каждой клеточке об ощущении счастья. Дурное настроение также передается химическим путем каждой клеточке, ослабляя деятельность иммунной системы. Все что мы думаем и делаем, возникает сначала в глубинах квантового тела, а затем всплывает на поверхность жизни.

Человек может научить свое сознание управлять собой на этом тонком уровне; по существу, то, что он называет мыслями и эмоциями, является лишь выражением этих квантовых флуктуаций. Мысль человеческая – это своего рода акт квантовой телепортации, посылка квантового пакета от одного объекта другому объекту, находящемуся на произвольном расстоянии. Такая передача информации возможна за счет эффекта «запутывания», где два объекта «знают» о существовании друг друга. Мысль, как только получает ориентир, отправляется в путь к объекту исследования и может определить его любой параметр и состояние, и уже в голове на экране флюидного зрения мгновенно отображает показатели работы исследуемого, а мозг оценивает и распознает, вынося свои суждения.

«Телепортация» мысли в окружающее пространство

В своей книге «Квантовая магия» С.И. Доронин проводит интересную аналогию между исследованиями в области квантовой телепортации и особенностями человеческой психики, имеющей квантовую природу. В частности, он отмечает:

«... при построении квантового коммутатора предполагается наличие определенного числа (N) пользователей и центрального коммутатора, с которым все они соединены квантовым каналом связи. Принципиальную схему работы такого коммутатора можно объяснить следующим образом. Пусть у каждого пользователя есть (в простейшем случае) одна максимально запутанная пара. Они отдают одну частицу из своей пары на центральный коммутатор, в котором происходит их объединение. В этом случае все оставшиеся у пользователей частицы оказываются квантово-запутанными. Все N частиц, которые по-прежнему у них остаются, становятся квантово-коррелированными, то есть все пользователи объединены квантовыми корреляциями, они как бы «включены» в единую квантовую сеть и могут «телепатически» общаться друг с другом.

Квантовый коммутатор, описанный выше, можно считать простейшей физической моделью, иллюстрирующий работу эгрегоров (эзотерический термин) и демонов (в религиозной традиции). Когда мы отдаем «в общее пользование» свои мысли и эмоции, то тем самым оказываемся «включенными» в различные «квантовые коммутаторы» в соответствии с направленностью своих мыслей и чувств. Чтобы эгрегор (демон) «заработал» в качестве квантового коммутатора и начал свое существование как объективный элемент реальности («энергетический сгусток» в квантовом ореоле Земли), достаточно того, чтобы «психические выделения» у нескольких человек были одинаковы (или близки). В целом, чтобы между различными системами было взаимодействие, они должны иметь одинаковые состояния. Тогда переходы между этими состояниями и, как следствие, генерация и поглощение энергии будут приводить к взаимодействию и корреляциям. Одинаковые энергии будут способны к взаимодействию. Причем чем меньше разность энергии между уровнями, чем слабее классические взаимодействия, тем больше в этом случае относительная величина квантовых корреляций. Например, мы все имеем примерно одинаковые наборы базисных эмоциональных и ментальных состояний, поэтому однонаправленные мысли и эмоции (то есть переход нескольких людей в определенное ментальное или эмоциональное состояние) автоматически ведут к генерации близких энергетических потоков и к взаимодействию на этих уровнях. Другими словами – к образованию новых или подпитке уже существующих «квантовых коммутаторов» – эгрегоров (демонов). Эмоции при этом содержат больше энергии, но меньше квантовой информации, мысли – наоборот, меньше энергии, но больше квантовой информации (мера запутанности выше).

Индивидуальное сознание должно уметь целенаправленно оперировать в том пространстве состояний, до которого оно добралось (изменять вектор состояния на достигнутом уровне). Умение изменять весь вектор состояния на каком-то уровне реальности дает возможность менять ее на всех более низких (плотных) уровнях. Практически это означает, что сознание умеет нужным образом перераспределять энергию, управляя энергетическими потоками. Замечу, что изменение состояния – это и есть изменение энергии, поскольку в квантовой механике она является функцией состояния».

По материалам Интернет-изданий

Такую машину-телепорт построили в фильме «Контакт». С ее помощью героиня Джоди Фостер совершила путешествие в другой мир, а может — и нет…

В фантастических мирах, придуманных писателями и сценаристами, телепортация давно стала стандартной транспортной услугой. Кажется, сложно найти настолько же быстрый, удобный и в то же время интуитивно понятный способ перемещения в пространстве.

Красивую идею телепортации поддерживают и ученые: еще основатель кибернетики Норберт Винер в своей работе «Кибернетика и общество» посвятил «возможности путешествовать при помощи телеграфа» целую главу. С тех пор прошло полвека, и за это время мы почти вплотную приблизились к мечте человечества о таких путешествиях: в нескольких лабораториях мира осуществлена успешная квантовая телепортация.

Основы

Почему телепортация именно квантовая? Дело в том, что квантовые объекты (элементарные частицы или атомы) обладают специфическими свойствами, которые обусловлены законами квантового мира и в макромире не наблюдаются. Именно такие свойства частиц и послужили основой экспериментов по телепортации.

ЭПР-парадокс

В период активного развития квантовой теории, в 1935 году, в знаменитой работе Альберта Эйнштейна, Бориса Подольского и Натана Розена «Может ли квантово-механическое описание реальности быть полным?» был сформулирован так называемый ЭПР-парадокс (парадокс Эйнштейна-Подольского-Розена).

Авторы показали, что из квантовой теории следует: если есть две частицы A и B с общим прошлым (разлетевшиеся после столкновения или образовавшиеся при распаде некоторой частицы), то состояние частицы B зависит от состояния частицы A и эта зависимость должна проявляться мгновенно и на любом расстоянии. Такие частицы называют ЭПР-парой и говорят, что они находятся в «запутанном» состоянии.

Прежде всего напомним, что в квантовом мире частица — это объект вероятностный, то есть она может находиться в нескольких состояниях одновременно — например, может быть не просто «черной» или «белой», а «серой». Однако при измерении такой частицы мы всегда увидим только одно из возможных состояний — «черное» или «белое», причем с определенной предсказуемой вероятностью, а все остальные состояния при этом разрушатся. Более того, из двух квантовых частиц можно создать такое «запутанное» состояние, что все будет еще интереснее: если одна из них окажется при измерении «черной», то другая — непременно «белой», и наоборот!

Чтобы разобраться, в чем же заключается парадокс, сначала проведем опыт с макроскопическими объектами. Возьмем два ящика, в каждом из которых лежат по два шара — черный и белый. И отвезем один из этих ящиков на Северный полюс, а другой на Южный.

Если мы вынем на Южном полюсе один из шаров (например, черный), то это никак не повлияет на результат выбора на Северном полюсе. Совершенно не обязательно, что там нам в этом случае попадется именно белый шар. Этот простой пример подтверждает, что наблюдать ЭПР-парадокс в нашем мире невозможно.

Но в 1980 году Алан Аспект экспериментально показал, что в квантовом мире ЭПР-парадокс действительно имеет место. Специальные измерения состояния ЭПР-частиц A и B показали, что ЭПР-пара не просто связана общим прошлым, но частица B каким-то образом мгновенно «узнает» о том, как была измерена частица A (какую ее характеристику измеряли) и какой получился результат. Если бы речь шла об упомянутых выше ящиках с четырьмя шарами, то это означало бы, что вынув на Южном полюсе черный шар, на Северном полюсе мы непременно должны вынуть белый! Но ведь взаимодействия между A и B нет и сверхсветовая передача сигнала невозможна! В последующих экспериментах существование ЭПР-парадокса подтверждалось, даже если частицы ЭПР-пары были удалены друг от друга на расстояние порядка 10 км.

Эти совершенно невероятные с точки зрения нашей интуиции опыты легко объясняются квантовой теорией. Ведь ЭПР-пара как раз представляет собой две частицы в «запутанном» состоянии, а значит, результат измерения, например, частицы A определяет результат измерения частицы B.

Интересно, что Эйнштейн считал им же предсказанное поведение частиц в ЭПР-парах «действием демонов на расстоянии» и был уверен, что ЭПР-парадокс лишний раз демонстрирует несостоятельность квантовой механики, которую ученый отказывался принимать. Он полагал, что объяснение парадокса неубедительно, ведь «если согласно квантовой теории наблюдатель создает или может частично создавать наблюдаемое, то мышь может переделать Вселенную, просто посмотрев на нее».

Эксперименты по телепортации

В 1993 году Чарльз Беннет и его коллеги придумали, как можно использовать замечательные свойства ЭПР-пар: они изобрели способ переноса квантового состояния объекта на другой квантовый объект с помощью ЭПР-пары и назвали этот способ квантовой телепортацией. А в 1997 году группа экспериментаторов под руководством Антона Цайлингера впервые осуществила квантовую телепортацию состояния фотона. Схема телепортации подробно описана на врезке.

Ограничения и разочарования

Принципиально важно, что квантовая телепортация — это перенос не объекта, а только неизвестного квантового состояния одного объекта на другой квантовый объект. Мало того, что квантовое состояние телепортируемого объекта так и остается для нас тайной, оно к тому же необратимо разрушается. Но в чем мы можем быть совершенно уверены, так это в том, что получили идентичное состояние другого объекта в другом месте.

Тех, кто рассчитывал, что телепортация будет мгновенной, ждет разочарование. В способе Беннета для успешной телепортации необходим классический канал связи, а значит, и скорость телепортации не может превышать скорость передачи данных по обычному каналу.

И пока совершенно неизвестно, удастся ли перейти от телепортации состояний частиц и атомов к телепортации макроскопических объектов.

Применение

Практическое применение для квантовой телепортации нашлось быстро — это квантовые компьютеры, где информация хранится в виде набора квантовых состояний. Тут квантовая телепортация оказалась идеальным способом передачи данных, который принципиально исключает возможность перехвата и копирования передаваемой информации.

Дойдет ли очередь до человека?

Несмотря на все современные достижения в области квантовой телепортации, перспективы телепортации человека остаются весьма туманными. Конечно, хочется верить, что ученые что-нибудь придумают. Еще в 1966 году в книге «Сумма технологии» Станислав Лем писал: «Если нам удастся синтезировать из атомов Наполеона (при условии, что в нашем распоряжении имеется его «поатомная опись»), то Наполеон будет живым человеком. Если снять подобную опись с любого человека и передать ее «по телеграфу» на приемное устройство, аппаратура которого на основе принятой информации воссоздаст тело и мозг этого человека, то он выйдет из приемного устройства живым и здоровым».

Однако практика в этом случае намного сложнее теории. Так что нам с вами вряд ли придется попутешествовать по мирам с помощью телепортации, а тем более — с гарантированной безопасностью, ведь достаточно одной ошибки и можно превратиться в бессмысленный набор атомов. Вот опытный галактический инспектор из романа Клиффорда Саймака знает в этом толк и не зря считает, что «те, кто берется за передачу материи на расстояние, должны бы прежде научиться делать это как положено».