Какие физические приборы можно сделать своими руками. Занимательные опыты по физике. Диффузионная камера собственного изготовления

муниципальное бюджетное общеобразовательное учреждение «Мульминская средняя общеобразовательная школа Высокогорского муниципального района Республики Татарстан»

«Физические приборы для уроков физики своими руками»

(План проекта)

учитель физики и информатики

2017 год.

    Индивидуальная тема по самообразованию

    Введение

    Основная часть

    Ожидаемые результаты и выводы

    Заключение.

Индивидуальная тема по самообразованию: « Развитие интеллектуальных способностей учащихся при формирования исследовательских, проектных навыков на уроке и во внеурочной деятельности »

Введение

Для того, чтобы поставить необходимый опыт, нужно иметь приборы и измерительные инструменты. И не думайте, что все приборы делаются на заводах. Во многих случаях исследовательские установки сооружаются самими исследователями. При этом считается, что талантливее тот исследователь, который может поставить опыт и получить хорошие результаты не только на сложных, а и на более простых приборах. Сложное оборудование обоснованно применять только в тех случаях, когда без него нельзя обойтись. Так что не надо пренебрегать самодельными приборами - гораздо полезнее сделать их самим, чем пользоваться покупными.

Изобретение самодельных приборов дает непосредственную практическую пользу, повышая эффективность общественного производства. Работа учащихся в области техники содействует развитию у них творческого мышления. Всестороннее познание окружающего мира достигается путём наблюдений и опытов. Поэтому у учащихся ясное, отчётливое представление о вещах и явлениях создаётся только при непосредственном соприкосновении с ними, при непосредственном наблюдении явлений и самостоятельном воспроизведении их на опыте.

Изготовление самодельных приборов также считаем одной из главных задач по совершенствованию учебного оборудования кабинета физики.

Возникает проблема : Объектами работы в первую очередь должны быть устройства, в которых нуждается кабинеты физики. Не следует изготавливать никому не нужные устройства, затем нигде не используемые.
Не следует браться за работу и в том случае, если в ее успешном завершении нет достаточной уверенности. Это случается, когда для изготовления устройства трудно или невозможно достать какие-либо материалы или детали, а также когда процессы по изготовлению прибора и обработке деталей превышают возможности учащихся

В ходе подготовки плана проекта выдвинула гипотезу :

Если физико-технические умения формировать в рамках внеурочной деятельности то: повысится уровень сформированности физико-технических умений; повысится готовность к самостоятельной физико-технической деятельности;

С другой стороны, наличие самодельных приборов в школьном кабинете физики расширяет возможности совершенствования учебного эксперимента и улучшает постановку научно – исследовательских и проектных работ.

Актуальность

Изготовление приборов ведет за собой не только повышение уровня знаний, выявляет основное направление деятельности учащихся, является одним из способов активизации познавательной и проектной деятельности учащихся при изучении физики в 7-11 классах. При работе над прибором мы уходим от «меловой» физики. Оживает сухая формула, материализуется идея, возникает полное и четкое понимание. С другой стороны, подобная работа является хорошим примером общественно-полезного труда: удачно сделанные самодельные приборы могут значительно пополнить оборудование школьного кабинета. Изготавливать приборы на месте своими силами можно и нужно. Самодельные приборы имеют и другую постоянную ценность: их изготовление, с одной стороны, развивает у учителя и учащихся практические умения и навыки, а с другой - свидетельствует о творческой работе, о методическом росте учителя, об использовании проектной и исследовательской работы. Некоторые самодельные приборы могут оказаться удачнее промышленных в методическом отношении, более наглядными и простыми в действии, более понятными учащимся. Другие позволяют полнее и последовательнее проводить эксперимент с помощью существующих промышленных приборов, расширяют возможность их использования, что имеет очень важное методическое значение.

Значимость проектной деятельности в современных условиях, в условиях внедрения ФГОС ООО.

Использование различных форм обучения - работа в группе, обсуждение, презентация совместных проектов с использованием современных технологий, необходимость быть коммуникабельным, контактным в различных социальных группах, умение работать сообща в разных сферах, предотвращая конфликтные ситуации или достойно выходя из них – способствуют развитию коммуникативной компетентности. Организационная компетентность включает планирование, проведение исследования, организацию исследовательской деятельности. В процессе исследования у школьников происходит формирование информационных компетенций (поиск, анализ, обобщение, оценка информации). Они овладевают навыками грамотной работы с различными источниками информации: книгами, учебниками, справочниками, энциклопедиями, каталогами, словарями, Интернет-сайтами. Данные компетенции обеспечивают механизм самоопределения ученика в ситуациях учебной и иной деятельности. От них зависит индивидуальная образовательная траектория ученика и программа его жизнедеятельности в целом.

Я поставила следующую цель:

выявление одаренных детей и поддержка интереса к глубокому изучению профильных предметов; творческое развитие личности; развитие интереса к инженерно-техническим и исследовательским профессиям; привитие элементов исследовательской культуры, которое осуществляется посредством организации исследовательской деятельности школьников; социализация личности как путь познания: от формирования ключевых компетенций к личностным компетентностям. Сделать приборы, установки по физике для демонстрации физических явлений, объяснить принцип действия каждого прибора и продемонстрировать их работу

Для достижения поставленной цели выдвинула следующие задачи :

    изучить научную и популярную литературу по созданию самодельных приборов;

    сделать приборы по конкретным темам, которые вызывают затруднение в понимании теоретического материала по физике;

    сделать приборы отсутствующие в лаборатории;

    развить интерес к изучению астрономии и физики;

    воспитать упорства в достижении поставленной цели, настойчивости.

Были определены следующие этапы работы и сроки реализации:

Февраль 2017.

Накопление теоретических и практических знаний и умений;

Март – апрель 2017 г.

Составление эскизных рисунков, чертежей, схем проекта;

Выбор наиболее удачного варианта проекта и краткое описание принципа его действия;

Предварительный расчет и приближенное определение параметров элементов, составляющих выбранный вариант проекта;

Принципиальное теоретическое решение и разработка самого проекта;

Подбор деталей, мат

Мысленное предвосхищение материалов, инструментов и измерительных приборов для материализации проекта; всех основных этапов деятельности по сборке материального макета проекта;

Систематический контроль своей деятельности при изготовлении прибора (установки);

Снятие характеристик с изготовленного прибора (установки) и сравнение их с предполагаемыми (анализ проекта);

Перевод макета в завершенную конструкцию прибора (установки) (практическая реализация проекта);

Декабрь 2017

Защита проекта на специальной конференции и демонстрация приборов (установок) (общественная презентация).

Во время работы над проектом будут использованы следующие методы исследования:

Теоретический анализ научной литературы;

Конструирование учебного материала.

Тип проекта: творческий.

Практическое значение работы:

Результатами работы могут воспользоваться учителя физики в школах нашего района.

Ожидаемые результаты:

Если цели проекта достигнуты, то можно ожидать следующие результаты

Получение качественно нового результата, выраженного в развитии познавательных способностей ученика и его самостоятельности в учебно-познавательной деятельности.

Изучать и проверять закономерности, уточнять и развивать основополагающие понятия, раскрывать методы исследования и прививать навыки по измерению физических величин,

Показывать возможность управления физическими процессами и явлениями,

Подбирать приборы, инструменты, аппаратуру, адекватную изучаемому реальному явлению или процессу,

Понимать роль опыта в познании явлений природы,

Создавать гармонию между теоретическими и эмпирическими значениями.

Вывод

1.Самодельные физические установки обладают большей дидактической отдачей.

2. Самодельные установки создаются под конкретные условия.

3. Самодельные установки априорно более надёжны.

4. Самодельные установки намного дешевле, чем государственные приборы.

5. Самодельные установки часто определяют судьбу школьника.

Изготовление приборов, как часть проектной деятельности, используется учителем физики в условиях внедрения ФГОС ООО. Работа над изготовлением приборов многих учащихся увлекает настолько, что они посвящают ей все свое свободное время. Такие учащиеся – незаменимые помощники учителю при подготовке классных демонстрации, лабораторных работ, практикумов. О таких увлеченных физикой учениках прежде всего можно заранее сказать, что в будущем они станут прекрасными производственниками - им легче овладеть машиной, станком, техникой. Попутно приобретается умение делать вещи своими руками; воспитывается честность и ответственность за сделанное тобой дело. Делом чести является сделать прибор так, чтобы все поняли, все поднялись на ступеньку, на которую ты уже вскарабкался.

Но в данном случае главное заключается в другом: увлекаясь приборами и опытами, часто демонстрируя их действие, рассказывая об устройстве и принципе действия своим товарищам, ребята проходят своеобразное испытание на пригодность к учительской профессии, они потенциальные кандидаты в педагогические учебные заведения. Демонстрация готового прибора автором перед своими товарищами во время урока физики - это лучшая оценка его труда и возможность отметить его заслуги перед классом. Если такой возможности не будет, то общественный смотр, презентацию изготовленных приборов демонстрируем во время каких-нибудь внеклассных мероприятии. Это является негласной рекламой вида деятельности по изготовлению самодельных приборов, что способствует широкому вовлечению и других учеников в эту работу. Нельзя упускать из виду и то важное обстоятельство, что эта работа принесет пользу не только учащимся, но и школе: будет осуществлена таким образом конкретная связь обучения с общественно полезным трудом, с проектной деятельностью.

Заключение.

Теперь как будто все важное сказано. Замечательно, если мой проект «зарядит» творческим оптимизмом, заставит кого-то поверить в свои силы. Ведь в этом и состоит его главная цель: сложное представить доступным, стоящим любых усилий и способным дать человеку ни с чем не сравнимую радость постижения, открытия. Возможно, наш проект взбодрит кого-то на творчество. Ведь творческая бодрость, как крепкая упругая пружина, затаившая заряд мощного удара. Не зря гласит мудрый афоризм: «Только начинающий творец всемогущ!»

Фомин Даниил

Физика наука экспериментальная и создание приборов своими руками способствует лучшему усвоению законов и явлений. Много различных вопросов возникает при изучении каждой темы.На многие может ответить сам учитель, но насколько чудеснодобыть ответы путем собственного самостоятельного исследования.

Скачать:

Предварительный просмотр:

ОКРУЖНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ УЧАЩИХСЯ

СЕКЦИЯ «Физика»

Проект

Физический прибор своими руками.

Учащийся 8 а класса

ГБОУ СОШ № 1 пгт. Суходол

Сергиевского района Самарской области

Научный руководитель: Шамова Татьяна Николаевна

учитель физики

  1. Введение.
  1. Основная часть.
  1. Назначение прибора;
  2. инструменты и материалы;
  3. Изготовление прибора;
  4. Общий вид прибора;
  5. Особенности демонстрации прибора.

3.Исследования.

4.Заключение.

5. Список используемой литературы.

1.Введение.

Для того, чтобы поставить необходимый опыт, нужно иметь приборы и измерительные инструменты. И не думайте, что все приборы делаются на заводах. Во многих случаях исследовательские установки сооружаются самими исследователями. При этом считается, что талантливее тот исследователь, который может поставить опыт и получить хорошие результаты не только на сложных, а и на более простых приборах. Сложное оборудование обоснованно применять только в тех случаях, когда без него нельзя обойтись. Так что не надо пренебрегать самодельными приборами- гораздо полезнее сделать их самим, чем пользоваться покупными.

ЦЕЛЬ:

Сделать прибор, установку по физике для демонстрации физических явлений своими руками.

Объяснить принцип действия данного прибора. Продемонстрировать работу данного прибора.

ЗАДАЧИ:

Сделать приборы вызывающие большой интерес у учащихся.

Сделать приборы отсутствующие в лаборатории.

Сделать приборы, вызывающие затруднение в понимании теоретического материала по физике.

Исследовать зависимость периода от длины нити и амплитуды отклонения.

ГИПОТЕЗА:

Сделанный прибор, установка по физике для демонстрации физических явлений своими руками применить на уроке.

При отсутствии данного прибора в физической лаборатории, данный прибор сможет заменить недостающую установку при демонстрации и объяснении темы.

2.Основная часть.

2.1.Назначение прибора.

Прибор предназначен для наблюдения резонанса в механических колебаниях.

2.2.Инструменты и материалы .

Обыкновенная проволока, шарики, гайки, олово, леска. Паяльник.

2.3.Изготовление прибора.

Изогнуть проволоку в виде опоры. Протянуть общую леску. Припаять шарики к гайкам, отмерить леску 2 шт одинаковой длины,остальные должны быть короче и длиннее на несколько сантиметров, подвесить с их помощью шарики. Следить за тем, чтобы маятники с одинаковой длиной лески не оказались рядом. Прибор к опыту готов!

2.4.Общий вид прибора.

2.5.Особенности демонстрации прибора.

Для демонстрации прибора необходимо выбрать маятник, длина которого совпадает с длиной одного из трех оставшихся, если отклонить маятник от положения равновесия и предоставить его самому себе, то он будет совершать свободные колебания. Это вызовет колебания лески, в результате чего на маятники через точки подвеса будет действовать вынуждающая сила, периодически меняющаяся по модулю и направлению с такой же частотой, с какой колеблется маятник. Мы увидим, что маятник с совпадающей длиной подвеса начнет совершать колебания с той же частотой, при этом амплитуда колебаний этого маятника значительно больше амплитуд остальных маятников. В данном случае маятник колеблется в резонанс с маятником 3. Происходит это потому, что амплитуда установившихся колебаний, вызванных вынуждающей силы, достигает наибольшего значения именно при совпадении частоты изменяющей силы с собственной частотой колебательной системы. Дело в том, что в этом случае направление вынуждающей силы в любой момент времени совпадает с направлением движения колеблющегося тела. Таким образом создаются наиболее благоприятные условия для пополнения энергии колебательной системы за счет работы вынуждающей силы. Например, чтобы посильнее раскачать качели, мы подталкиваем их таким образом, чтобы направление действующей силы совпадало с направлением движения качелей. Но следует помнить, что понятие резонанса применимо только к вынужденным колебаниям.

3. Нитяной или математический маятник

Колебания! Наш взгляд падает на маятник стенных часов. Неугомонно спешит он то в одну, то в другую сторону, своими ударами как бы разбивая поток времени на точно размеренные отрезки. «Раз-два, раз-два», - невольно повторяем мы в такт его тиканию.

Отвес и маятник, – простейшие из всех приборов, какими пользуется наука. Тем удивительнее, что столь примитивными орудиями добыты поистине сказочные результаты: человеку удалось, благодаря им, проникнуть мысленно в недра Земли, узнать, что делается в десятках километров под нашими ногами.

Качание влево и обратно вправо, в исходное положение, составляет полное колебание маятника, а время одного полного колебания называют периодом колебания. Число колебаний тела в секунду называется частотой колебания. Маятник – это тело, подвешенное на нити, другой конец которой закреплен. Если длина нити велика по сравнению с размерами подвешенного на ней тела, а масса нити ничтожно мала сравнительно с массой тела, то такой маятник называют математическим или нитяным маятником. Практически маленький тяжелый шарик, подвешенный на легкой длинной нити, можно считать нитяным маятником.

Период колебаний маятника выражается формулой:

Т = 2π √ l / g

Из формулы видно, что период колебаний маятника не зависит от массы груза, амплитуды колебаний, что особенно удивительно. Ведь при различных амплитудах колеблющееся тело за одно колебание проходит разные пути, но время на это тратит всегда одно и то же. Продолжительность качания маятника зависит от длины его и ускорения свободного падения.

В своей работе мы и решили проверить экспериментально, что период не зависит от других факторов и убедиться в справедливости этой формулы.

Изучение зависимости колебаний маятника от массы колеблющегося тела, длины нити и величины начального отклонения маятника.

Исследование.

Приборы и материалы : секундомер, мерная лента.

Измерили период колебаний маятника сначала для массы тела 10 г и угла отклонения 20°, меняя при этом длину нити.

Также измерили период, увеличив угол отклонения до 40°, при массе 10 г и разной длине нити. Результаты измерений занесли в таблицу.

Таблица.

Длина нити

l, м.

Масса

маятника, кг

Угол отклонения

Число колебаний

Полное время

t. c

Период

T. c

0,03

0,01

0.35

0,05

0,01

0,45

0,01

0,63

0,03

0,01

0,05

0,01

0,01

Из опытов мы убедились, что период действительно не зависит от массы маятника и угла отклонения его, но с увеличением длины нити маятника период его колебания возрастет, но не пропорционально длине, а более сложно. Результаты опытов приведены в таблице.

Итак, период колебаний математического маятника зависит только от длины маятника l и от ускорения свободного падения g.

4.Заключение.

Наблюдать за опытом проводимым учителем, интересно. Проводить его самому интереснее вдвойне.

А проводить опыт с прибором, сделанным и сконструированным своими руками, вызывает очень большой интерес у всего класса. В таких опытах легко установить взаимосвязь и сделать вывод как работает данная установка.

5.Литература.

1. Учебное оборудование по физике в средней школе. Под редакцией А.А Покровского «Просвещения» 1973

2. Учебник по физике А. В. Перышкина, Е. М. Гутник «Физика» для 9 класса;

3.Физика:Справ.материалы:О.Ф. Кабардин Учеб.пособие для учащихся. – 3-е изд. – М.:Просвещение,1991.

Введение

Без сомнения, все наше знание начинается с опытов.
(Кант Эммануил. Немецкий философ 1724-1804г.г)

Физические опыты в занимательной форме знакомят учащихся с разнообразными применениями законов физики. Опыты можно использовать на уроках для привлечения внимания учащихся к изучаемому явлению, при повторении и закреплении учебного материала, на физических вечерах. Занимательные опыты углубляют и расширяют знания учащихся, способствуют развитию логического мышления, прививают интерес к предмету.

В данной работе описано 10 занимательных опытов, 5 демонстрационных экспериментов с использованием школьного оборудования. Авторами работ являются учащиеся 10 класса МОУ СОШ № 1 п. Забайкальск, Забайкальского края – Чугуевский Артём, Лаврентьев Аркадий, Чипизубов Дмитрий. Ребята самостоятельно проделали данные опыты, обобщили результаты и представили их в виде данной работы

Роль эксперимента в науке физике

О том, что физика наука молодая
Сказать определённо, здесь нельзя
И в древности науку познавая,
Стремились постигать её всегда.

Цель обучения физики конкретна,
Уметь на практике все знания применять.
И важно помнить – роль эксперимента
Должна на первом месте устоять.

Уметь планировать эксперимент и выполнять.
Анализировать и к жизни приобщать.
Строить модель, гипотезу выдвинуть,
Новых вершин стремиться достигнуть

Законы физики основаны на фактах, установленных опытным путем. Причем нередко истолкование одних и тех же фактов меняется в ходе исторического развития физики. Факты накапливаются в результате наблюдений. Но при этом только ими ограничиваться нельзя. Это только первый шаг к познанию. Дальше идет эксперимент, выработка понятий, допускающих качественные характеристики. Чтобы из наблюдений сделать общие выводы, выяснить причины явлений, надо установить количественные зависимости между величинами. Если такая зависимость получается, то найден физический закон. Если найден физический закон, то нет необходимости ставить в каждом отдельном случае опыт, достаточно выполнить соответствующие вычисления. Изучив экспериментально количественные связи между величинами, можно выявить закономерности. На основе этих закономерностей развивается общая теория явлений.

Следовательно, без эксперимента не может быть рационального обучения физике. Изучение физики предполагает широкое использование эксперимента, обсуждение особенностей его постановки и наблюдаемых результатов.

Занимательные опыты по физике

Описание опытов проводилось с использованием следующего алгоритма:

  1. Название опыта
  2. Необходимые для опыта приборы и материалы
  3. Этапы проведения опыта
  4. Объяснение опыта

Опыт № 1 Четыре этажа

Приборы и материалы: бокал, бумага, ножницы, вода, соль, красное вино, подсолнечное масло, крашенный спирт.

Этапы проведения опыта

Попробуем налить в стакан четыре разных жидкости так, чтобы они не смешались и стояли одна над другой в пять этажей. Впрочем, нам удобнее будет взять не стакан, а узкий, расширяющийся к верху бокал.

  1. Налить на дно бокала солёной подкрашенной воды.
  2. Свернуть из бумаги “Фунтик” и загнуть его конец под прямым углом; кончик его отрезать. Отверстие в “Фунтике” должно быть величиной с булавочную головку. Налить в этот рожок красного вина; тонкая струйка должна вытекать из него горизонтально, разбиваться о стенки бокала и по нему стекать на солёную воду.
    Когда слой красного вина по высоте сравняется с высотой слоя подкрашенной воды, прекратить лить вино.
  3. Из второго рожка налей таким же образом в бокал подсолнечного масла.
  4. Из третьего рожка налить слой крашенного спирта.

Рисунок 1

Вот и получилось у нас четыре этажа жидкостей в одном бокале. Все разного цвета и разной плотности.

Объяснение опыта

Жидкости в бакалее расположились в следующем порядке: подкрашенная вода, красное вино, подсолнечное масло, подкрашенный спирт. Самые тяжёлые - внизу, самые лёгкие – вверху. Самая большая плотность у солёной воды , самая маленькая у подкрашенного спирта .

Опыт № 2 Удивительный подсвечник

Приборы и материалы: свеча, гвоздь, стакан, спички, вода.

Этапы проведения опыта

Не правда ли, удивительный подсвечник – стакан воды? А этот подсвечник совсем не плох.

Рисунок 2

  1. Утяжелить конец свечи гвоздём.
  2. Рассчитать величину гвоздя так, чтобы свеча вся погрузилась в воду, только фитиль и самый кончик парафина должны выступать над водой.
  3. Зажечь фитиль.

Объяснение опыта

Позволь, - скажут тебе, - ведь через минуту свеча догорит до воды и погаснет!

В том-то и дело, - ответишь ты, - что свеча с каждой минутой короче. А раз короче, значит и легче. Раз легче, значит, она всплывёт.

И, правда, свеча будет понемножку всплывать, причём охлаждённый водой парафин у края свечи будет таять медленней, чем парафин, окружающий фитиль. Поэтому вокруг фитиля образуется довольно глубокая воронка. Эта пустота, в свою очередь, облегчает свечу, потому-то наша свеча и догорит до конца.

Опыт № 3 Свеча за бутылкой

Приборы и материалы: свеча, бутылка, спички

Этапы проведения опыта

  1. Поставить зажженную свечу позади бутылки, а самому стань так, чтобы лицо отстояло от бутылки на 20-30 см.
  2. Стоит теперь дунуть, и свеча погаснет, будто между тобой и свечёй нет никакой преграды.

Рисунок 3

Объяснение опыта

Свеча гаснет потому, что бутылка воздухом “Обтекается”: струя воздуха разбивается бутылкой на два потока; один обтекает её справа, а другой – слева; а встречаются они примерно там, где стоит пламя свечи.

Опыт № 4 Вертящаяся змейка

Приборы и материалы: плотная бумага, свеча, ножницы.

Этапы проведения опыта

  1. Из плотной бумаги вырезать спираль, растянуть её немного и посадить на конец изогнутой проволоки.
  2. Держать эту спираль над свечкой в восходящем потоке воздуха, змейка будет вращаться.

Объяснение опыта

Змейка вращается, т.к. происходит расширение воздуха под действием тепла и о превращении теплой энергии в движение.

Рисунок 4

Опыт № 5 Извержение Везувия

Приборы и материалы: стеклянный сосуд, пузырёк, пробку, спиртовая тушь, вода.

Этапы проведения опыта

  1. В широкий стеклянный сосуд, наполненный водой, поставить пузырёк спиртовой туши.
  2. В пробке пузырька должно быть небольшое отверстие.

Рисунок 5

Объяснение опыта

Вода имеет большую плотность, чем спирт; она постепенно будет входить в пузырёк, вытесняя оттуда тушь. Красная, синяя или черная жидкость тоненькой струйкой будет подниматься из пузырька кверху.

Опыт № 6 Пятнадцать спичек на одной

Приборы и материалы: 15 спичек.

Этапы проведения опыта

  1. Положить одну спичку на стол, а на неё поперёк 14 спичек так, чтобы головки их торчали кверху, а концы касались стола.
  2. Как поднять первую спичку, держа её за один конец, и вместе с нею все остальные спички?

Объяснение опыта

Для этого нужно только поверх всех спичек, в ложбинку между ними, положить ещё одну, пятнадцатую спичку

Рисунок 6

Опыт № 7 Подставка для кастрюли

Приборы и материалы: тарелка, 3 вилки, кольцо для салфетки, кастрюля.

Этапы проведения опыта

  1. Поставить три вилки в кольцо.
  2. Поставить на данную конструкцию тарелку.
  3. На подставку поставить кастрюлю с водой.

Рисунок 7

Рисунок 8

Объяснение опыта

Данный опыт объясняется правилом рычага и устойчивым равновесием.

Рисунок 9

Опыт № 8 Парафиновый мотор

Приборы и материалы: свеча, спица, 2 стакана, 2 тарелки, спички.

Этапы проведения опыта

Чтобы сделать это мотор, нам не нужно ни электричества, ни бензина. Нам нужно для этого только… свеча.

  1. Раскалить спицу и воткнуть её их головками в свечку. Это будет ось нашего двигателя.
  2. Положить свечу спицей на края двух стаканов и уравновесить.
  3. Зажечь свечу с обоих концов.

Объяснение опыта

Капля парафина упадёт в одну из тарелок, подставленных под концы свечи. Равновесие нарушится, другой конец свечи перетянет и опустится; при этом с него стечёт несколько капель парафина, и он станет легче первого конца; он поднимается к верху, первый конец опустится, уронит каплю, станет легче, и наш мотор начнёт работать вовсю; постепенно колебания свечи будут увеличиваться всё больше и больше.

Рисунок 10

Опыт №9 Свободный обмен жидкостями

Приборы и материалы: апельсин, бокал, красное вино или молоко, воду, 2 зубочистки.

Этапы проведения опыта

  1. Осторожно разрезать апельсин пополам, очистить так, чтобы кожица снялась целой чашечкой.
  2. Проткнуть в дне этой чашечки два отверстия рядом и положить её в бокал. Диаметр чашечки должен быть немного больше диаметра центральной части бокала, тогда чашечка удержится на стенках, не падая на дно.
  3. Опустить апельсинную чашечку в сосуд на одну треть высоты.
  4. Налить в апельсинную корку красного вина или подкрашенного спирта. Оно будет проходить через дырку, пока уровень вина не дойдёт до дна чашечки.
  5. Затем налить воды почти до края. Можно увидеть, как струя вина поднимается через одно из отверстий до уровня воды, между тем как вода, более тяжёлая, пройдет через другое отверстие и станет опускаться ко дну бокала. Через несколько мгновений вино очутится на верху, а вода внизу.

Опыт №10 Певучая рюмка

Приборы и материалы: тонкая рюмка, вода.

Этапы проведения опыта

  1. Наполнить рюмку водой и вытереть края рюмки.
  2. Смоченным пальцем потереть в любом месте рюмки, она запоёт.

Рисунок 11

Демонстрационные эксперименты

1. Диффузия жидкостей и газов

Диффузия(от лат. diflusio - распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотическим тепловым движением молекул (атомов). Различают диффузию в жидкостях, газах и твёрдых телах

Демонстрационный эксперимент «Наблюдение диффузии»

Приборы и материалы: вата, нашатырный спирт, фенолфталеин, установка для наблюдения диффузии.

Этапы проведения эксперимента

  1. Возьмём два кусочка ватки.
  2. Смочим один кусочек ватки фенолфталеином, другой – нашатырным спиртом.
  3. Приведём ветки в соприкосновение.
  4. Наблюдается окрашивание ваток в розовый цвет вследствие явления диффузии.

Рисунок 12

Рисунок 13

Рисунок 14

Явление диффузии можно пронаблюдать при помощи специальной установки

  1. Нальём в одну из колбочек нашатырный спирт.
  2. Смочим кусочек ваты фенолфталеином и положим сверху в колбочку.
  3. Через некоторое время наблюдаем окрашивание ватки. Данный эксперимент демонстрирует явление диффузии на расстоянии.

Рисунок 15

Докажем что явление диффузии зависит от температуры. Чем выше температура, тем быстрее протекает диффузия.

Рисунок 16

Для демонстрации данного опыта возьмём два одинаовых стакана. В один стакан нальём холодной воды, в другой – горячей. Добавим в стаканы медный купорос, наблюдаем, что в горячей воде медный купорос растворяется быстрее, что доказывает зависимость диффузии от температуры.

Рисунок 17

Рисунок 18

2. Сообщающиеся сосуды

Для демонстрации сообщающихся сосудов возьмем ряд сосудов различной формы, соединенных в нижней части трубками.

Рисунок 19

Рисунок 20

Будем наливать жидкость в один из них: мы сейчас же обнаружим, что жидкость перетечет по трубкам в остальные сосуды и установится во всех сосудах на одном уровне.

Объяснение этого опыта заключается в следующем. Давление на свободных поверхностях жидкости в сосудах одно и то же; оно равно атмосферному давлению. Таким образом, все свободные поверхности принадлежат одной и той же поверхности уровня и, следовательно, должны находиться в одной горизонтали плои верхняя кромка самого сосуда: иначе чайник нельзя будет налить доверху.

Рисунок 21

3.Шар Паскаля

Шар Паскаля – это прибор предназначен для демонстрации равномерной передачи давления, производимого на жидкость или газ в закрытом сосуде, а также подъёма жидкости за поршнем под влиянием атмосферного давления.

Для демонстрации равномерной передачи давления, производимого на жидкости в закрытом сосуде, необходимо, используя поршень, набрать в сосуд воды и плотно насадить на патрубок шар. Вдвигая поршень в сосуд, продемонстрировать истечение жидкости из отверстий в шаре, обратив внимание на равномерное истечение жидкости по всем направлениям.

МАОУ лицей №64 г. Краснодара Физика рук-ль Спицына Л.И.

Работа - участник Всероссийского фестиваля педагогического творчества в 2017 году

На сайте сайт размещается для обмена опытом работы с коллегами

САМОДЕЛЬНЫЕ ПРИБОРЫ ДЛЯ УЧЕБНЫХ ИССЛЕДОВАНИЙ

В ЛАБОРАТОРНОМ ПРАКТИКУМЕ по ФИЗИКЕ

Научно-исследовательский проект

"Физика и физические задачи повсюду существуют

в том мире, в котором мы живем, работаем,

любим, умираем." - Дж.Уокер.

Введение.

С раннего детства, когда с легкой руки воспитателя детского сада Зои Николаевны, ко мне приклеилось «Коля-физик», я интересуюсь физикой как наукой теоретической и прикладной.

Еще в начальной школе, изучая доступные мне материалы в энциклопедиях, определил для себя круг наиболее интересных вопросов; уже тогда радиоэлектроника стала основой внешкольного времяпрепровождения. В средней школе стал уделять особое внимание таким вопросам современной науки, как ядерная и волновая физика. В профильном классе на первый план вышло изучение проблем радиационной безопасности человека в современном мире.

Увлеченность конструированием пришла вместе с книгой Ревича Ю. В. «Занимательная электроника», моими настольными книгами стали трехтомный «Элементарный учебник физики» под редакцией Ландсберга Г. С., «Курс физики» Детлафа А.А. и другие.

Каждый человек, считающий себя «технарём», должен учиться воплощать свои, пусть даже самые фантастические замыслы и идеи, в самостоятельно изготовленные действующие модели, приборы и устройства, чтобы с их помощью подтвердить или опровергнуть эти замыслы. Тогда, завершив общее образование, он получает возможность искать пути, следуя которым сумеет идеи свои воплотить в жизнь.

Актуальность темы «Физика своими руками» определяется, во-первых, возможностью технического творчества для каждого человека, во-вторых, возможностью использовать самодельные приборы в образовательных целях, что обеспечивает развитие интеллектуальных и творческих способностей обучающегося.

Развитие коммуникационных технологий и поистине безграничные образовательные возможности Интернет-сети позволяют сегодня каждому желающему использовать их во благо своего развития. Что я хочу этим сказать? Только то, сейчас каждый, кто захочет, может «нырнуть» в бесконечный океан доступных сведений о чем угодно, в любой форме: видео, книги, статьи, сайты. Сегодня существует множество различных сайтов, форумов, каналов «YOUTUBE», которые с радостью поделятся с тобой знаниями в любой области, а в частности, в области прикладных радиоэлектроники, механики, физики атомного ядра и т.д. Было бы очень здорово, если бы больше людей имело тягу к освоению чего-то нового, тягу к познанию мира и позитивному его преобразованию.

Задачи, решаемые в данной работе:

- реализовать единство теории и практики через создание самодельныхучебных приборов, действующих моделей;

Применить теоретические знания, полученные в лицее, для выбора конструкции моделей, используемых для создания самодельного учебного оборудования;

На основе теоретических исследований физических процессов выбрать необходимое оборудование, соответствующее условиям эксплуатации;

Использовать доступные детали, заготовки для их нестандартного применения;

Популяризировать прикладную физику в молодежной среде, в том числе среди одноклассников, через привлечение их ко внеурочной деятельности;

Способствовать расширению практической части образовательного предмета;

Пропагандировать значимость творческих способностей обучающихся в познании окружающего мира.

ОСНОВНАЯ ЧАСТЬ

В конкурсном проекте представлены изготовленные учебные модели и устройства:

Миниатюрный прибор оценки степени радиоактивности на основе счетчика Гейгера-Мюллера СБМ-20(самого доступного из существующих образцов).

Действующая модель диффузионной камеры Ландсгорфа

Комплекс для наглядного экспериментального определения величины скорости света в металлическом проводнике.

Небольшой прибор для измерения реакции человека.

Представляю теоретические основы физических процессов, принципиальные схемы и особенности конструкции приборов.

§1. Миниатюрный прибор оценки степени радиоактивности на основе счетчика Гейгера-Мюллера - дозиметр собственного изготовления

Идея собрать дозиметр посещала меня очень долго, и однажды руки дошли, я его собрал. На фото слева - счетчик Гейгера промышленного производства, справа - дозиметр на его основе.

Известно, что основным элементом дозиметра является датчик излучения. Самый доступным из них является счетчик Гейгера-Мюллера, принцип действия которого основан на том, что ионизирующие частицы могут ионизировать вещество - выбивать электроны с внешних электронных слоев. Внутри счетчика Гейгера находится инертный газ аргон. По сути, счетчик - конденсатор, который пропускает ток только тогда, когда внутри образуются положительные катионы и свободные электроны. Принципиальная схема включения устройства приведена на рис. 170. Одной пары ионов недостаточно, но из-за относительно высокой разности потенциалов на выводах счетчика происходит лавинная ионизация и возникает достаточно большой ток, чтобы можно было засечь импульс.

В роли пересчетного устройства выбрана схема на основе микроконтроллера кампании Atmel - Atmega8A. Индикация значений осуществляется при помощи LCD-дисплея от легендарного Nokia 3310, и звуковая индикация - посредством пьезоэлемента, взятого из будильника. Высокое напряжение для питания счетчика достигается при помощи миниатюрного трансформатора и умножителя напряжения на диодах и конденсаторах.

Принципиальная электрическая схема дозиметра :

Прибор показывает значение мощности дозы γ и рентгеновского излучения в микрорентгенах, с верхним пределом в 65мР/ч.

При снятии крышки-фильтра открывается поверхность счетчика Гейгера и прибор может фиксировать β - излучение. Замечу - лишь фиксировать, не измерять, так как степень активности β - препаратов измеряется плотностью потока - количество частиц на единицу площади. Да и эффективность к β - излучению у СБМ-20 очень низка, рассчитан он только для фотонного излучения.

Схема понравилась мне тем, что в ней грамотно реализована высоковольтная часть - количество импульсов для зарядки конденсатора питания счетчика пропорционально количеству регистрируемых импульсов. Благодаря этому прибор уже полтора года без выключений работает, истратив 7 батареек типа АА.

Почти все компоненты для сборки я закупил на адыгейском радиорынке, за исключением счетчика Гейгера - его приобрел в Интернет-магазине.

Надежность и эффективность прибора подтверждается таким образом: непрерывная полуторогодовая работа прибора и возможность постоянного контроля показывают, что:

Показания прибора колеблются от 6 до 14 микрорентген в час, что не превышает допустимую норму в 50 микрорентген в час;

Радиационный фон в учебных кабинетах, в микрорайоне моего проживания, непосредственно в квартире полностью соответствует нормам радиационной безопасности (НРБ - 99/2009), утвержденные Постановление главного государственного санитарного врача Российской федерации от 07 июля 2009 года № 47.

В повседневной жизни, оказывается, человеку не так-то просто попасть в область с повышенной радиоактивностью. Если это случится - прибор осведомит меня звуковым сигналом, что делает самодельный прибор гарантом радиационной безопасности его конструктора.

§ 2. Действующая модель диффузионной камеры Лангсдорфа.

2.1. Основы радиоактивности и способы ее изучения.

Радиоактивность - способность атомных ядер самопроизвольно или под действием внешнего излучения распадаться. Открытие этого замечательного свойства некоторых химических веществ принадлежит Анри Беккерелю в феврале 1896 года. Радиоактивность - явление, доказывающие сложное устройство атомного ядра, при котором ядра атомов распадаются на части, при этом почти все радиоактивные вещества имеют определенный период полураспада - промежуток времени, за который в образце распадется половина всех атомов радиоактивного вещества. При радиоактивном распаде из ядер атомов испускаются ионизирующие частицы. Это могут быть ядра атомов гелия - α-частицы, свободные электроны или позитроны - β - частицы, γ - лучи - электромагнитные волны. К ионизирующим частицам еще относят протоны, нейтроны, обладающие высокой энергией.

Сегодня известно, что подавляющее большинство химических элементов имеют радиоактивные изотопы. Есть такие изотопы и среди молекул воды - источника жизни на Земле.

2.2. Как обнаружить ионизирующее излучение?

Детектировать, то есть обнаружить ионизирующие излучения в настоящее время можно при помощи счетчиков Гейгера-Мюллера, сцинтилляционных детекторов, ионизационных камер, трековых детекторов. Последние могут не только обнаружить факт наличия излучения, но и позволяют наблюдателю увидеть, как летели частицы по форме трека. Сцинтилляционные детекторы хороши высокой чувствительностью и пропорциональным энергии частиц световыходом - количеством фотонов, излучаемых при поглощении веществом определенного количества энергии.

Известно, что у каждого изотопа различная энергия испускаемых частиц, поэтому при помощи сцинтилляционного детектора можно идентифицировать изотоп без химического или спектрального анализа. При помощи трековых детекторов тоже можно идентифицировать изотоп, поместив камеру в однородное магнитное поле, при этом треки будут искривлены.

Ионизирующие частицы радиоактивных тел обнаружить, изучать их характеристики можно с помощью специальных приборов, получивших название «трековые». К ним относят приборы, которые могут показать след движущейся ионизирующей частицы. Это могут быть: камеры Вильсона, диффузионные камеры Ландсгорфа, искровые и пузырьковые камеры.

2.3. Диффузионная камера собственного изготовления

Вскоре после того, как самодельный дозиметр стал стабильно работать, я понял, что дозиметра мне не достаточно и нужно сделать что-нибудь еще. В итоге я собрал диффузионную камеру, изобретенную Александром Лангсдорфом в 1936 году. И сегодня для научных исследований может быть использована камера, схема которой представлена на рисунке:

Диффузионная - усовершенствованная камера Вильсона. Усовершенствование заключается в том, что для получения перенасыщенного пара используется не адиабатное расширение, а диффузия паров из нагретой области камеры в холодную, то есть пар, находящийся в камере, преодолевает некий градиент температур.

2.4. Особенности процесса сборки камеры

Для работы устройства обязательным условием является наличие перепада температур в 50-700С, при этом нагревать одну сторону камеры нецелесообразно, т.к. спирт будет быстро испаряться. Значит, нужно охлаждать нижнюю часть камеры до - 30°С. Такую температуру может обеспечить испаряющийся сухой лед или элементы Пельтье. Выбор пал в пользу последних, ибо доставать лед мне было, честно, лень, да и порция льда послужит один раз, а элементы Пельтье - сколько угодно. Принцип их работы основан на эффекте Пельтье - переносе теплоты при протекании электрического тока.

Первый эксперимент после сборки дал ясно знать, что одного элемента оказалось недостаточно для получения необходимого перепада температур, пришлось использовать два элемента. На них подается разное напряжение, на нижний - большее, на верхний - меньшее. Это связано вот с чем: чем меньшую температуру необходимо достичь в камере, тем больше теплоты нужно отводить.

Когда я раздобыл элементы, мне пришлось немало поэкспериментировать, чтобы достичь нужной температуры. Нижнюю часть элемента охлаждает компьютерный радиатор с тепловыми (аммиачными) трубками и двумя 120-миллиметровыми кулерами. По приблизительным расчетам, кулер рассеивает в воздух около 100 ватт тепла. С источником питания я решил не заморачиваться, поэтому использовал импульсный компьютерный, суммарной мощностью 250 ватт, этого после проведения измерений оказалось достаточно.

Далее, я соорудил корпус из листовой фанеры для цельности и удобства хранения прибора. Получилось не совсем аккуратно, но довольно практично. Саму камеру, где образуются треки движущихся заряженных частиц или фотонных лучей, я сделал из обрезанной трубы и оргстекла, но вертикальный обзор не давал хорошей контрастности изображению. Я ее сломал и выбросил, сейчас использую в качестве прозрачной камеры стеклянный бокал. Дешево и сердито. Внешний вид камеры - на фото.

В качестве "сырья" для работы может быть использован как изотоп тория-232, находящийся в электроде для аргонодуговой сварки (применяется он в них для ионизации воздуха возле электрода и как следствие - более легкого зажигания дуги), так и дочерние продукты распада (ДПР) радона, содержащегося в воздухе, поступающего, в основном, с водой и газом. Чтобы собрать ДПР использую таблетки активированного угля - неплохой абсорбент. Чтобы интересующие нас ионы притягивались к таблетке, к ней подключаю умножитель напряжения, отрицательным выводом.

2.5. Ловушка ионов.

Еще один важный элемент конструкции - ловушка ионов, образующихся в результате ионизации атомов ионизирующими частицами. Конструктивно представляет собой умножитель сетевого напряжения с коэффициентом умножения равным 3, причем на выходе из умножителя имеют место быть отрицательные заряды. Это обусловлено тем, что в результате ионизации с внешней атомной оболочки выбиваются электроны, вследствие чего атом становится катионом. В камере использована ловушка, схема которой основана на использовании умножителя напряжения Кокрофта - Уолтона.

Электрическая схема умножителя имеет вид:

Эксплуатация камеры, ее результаты

Диффузионная камера после многочисленных пробных запусков, была использована в качестве экспериментального оборудования при выполнении лабораторной работы по теме "Изучение треков заряженных частиц", состоявшейся в 11 классе МАОУ лицея № 64 одиннадцатого февраля 2015 года. Фотографии треков, полученных посредством камеры, были зафиксированы на интерактивной доске, и использованы для определения вида частиц.

Как и в промышленном оборудовании, в самодельной камере удалось наблюдать следующее: чем шире трек, тем больше там частиц, следственно, более толстые треки принадлежат альфа-частицам, имеющим большие радиус и массу, а как следствие, большую кинетическую энергию, большее число ионизированных атомов на миллиметр пролета.

§ 3. Комплекс для наглядного экспериментального определения величины

скорости света в металлическом проводнике.

Начну, пожалуй, с того, что скорость света всегда для меня считалась чем-то невероятным, непостижимым, в какой-то степени невозможным, пока я не нашел в Интернете принципиальные электрические схемы валявшегося у меня двухканального осциллографа со сломанной синхронизацией, что без ремонта не давало возможности исследованию форм электрических сигналов. Но судьба была весьма благосклонна ко мне, мне удалось определить причину поломки блока синхронизации и устранить ее. Выяснилось, что неисправна была микросборка - коммутатор сигналов. По схеме из Интернета сделал копию этой микросборки из деталей, купленных на любимом радиорынке.

Взял экранированный телевизионный двадцатиметровый провод, собрал простой генератор высокочастотных сигналов на инверторах 74HC00. Н один конец провода подавал сигнал, параллельно снимая его из той же точки первым каналом осциллографа, со второго сигнал снимал вторым каналом, фиксировал разницу во времени помеж фронтов получаемых сигналов.

Длину провода - 20 метров разделил на это время, получил нечто похожее на 3*108 м/с.

Прилагаю принципиальную электрическую схему (куда же без нее?):

Внешний вид высокочастотного генератора представлен на фото. Используя доступное (бесплатное) программное обеспечение "Sprint-Layout 5.0" создал чертеж платы.

3. 1. Немного об изготовлении плат:

Саму плату, как обычно, сделал по технологии "ЛУТ" - народная лазерно-утюжная технология, разработанная обитателями просторов Интернета. Технология заключается в следующем: берется одно или двухслойный фольгированный стеклотекстолит, тщательно обрабатывается наждачной бумагой до блеска, затем ветошью, смоченной бензином или спиртом. Далее на лазерном принтере распечатывается рисунок, который необходимо нанести на плату. В зеркальном отражении на глянцевую бумагу печатается рисунок, а потом при помощи утюга тонер на глянцевой бумаге переносится на медную фольгу, покрывающую текстолит. Позже под струей теплой воды бумага скатывается пальцами с платы, остается плата с нанесенным рисунком. Теперь погружаем этот продукт в раствор хлорного железа, помешиваем порядка пяти минут, затем вынимаем плату, на которой медь осталась только под тонером из принтера. Наждачной бумагой удаляем тонер, опять обрабатываем спиртом или бензином, дальше покрываем паяльным флюсом. При помощи паяльника и залуженной оплетки телевизионного кабеля водим по плате, тем самым покрывая медь слоем олова, необходимого для последующей пайки компонентов и для защиты меди от коррозии.

Отмываем от флюса плату при помощи ацетона, например. Производим пайку всех компонентов, проводов и покрываем токонепроводящим лаком. Ждем сутки, пока лак сохнет. Готово, плата готова к работе.

Таким методом пользуюсь далеко не первый год, ни разу способ меня не подвел.

§ 4. Небольшое устройство для измерения реакции человека.

Работа по совершенствованию этого прибора идет и сейчас.

Используется устройство следующим образом: после подачи питания на микроконтроллер прибор переходит в режим циклического перебора значений некой переменной «С». После нажатия кнопки программа приостанавливается и присваивает значение, которое в тот момент было в переменной, значение которой циклически менялось. Таким образом, в переменной «С» получается случайное число. Сказали бы Вы: «А почему бы не воспользоваться функцией random() или чем-то вроде этого?».

А дело в том, что в языке, на котором я пишу - в BASCOM AVR, нет такой функции из-за его неполноценного набора команд, так как это язык для микроконтроллеров с малым объемом оперативной памяти, малой вычислительной способностью. После нажатия кнопки программа зажигает на табло четыре нуля и запускает таймер, ожидающий промежуток времени, пропорциональный значению переменной «С». После истечения заданного промежутка времени программа зажигает четыре восьмерки и запускает таймер, считающий время до того момента, пока не будет нажата кнопка.

Если нажать кнопку в момент между зажиганием нулей и восьмерок, то программа остановится, выведет на дисплей прочерки. Если кнопка была нажата после появления восьмерок, то программа выведет на дисплей время в миллисекундах прошедшее после зажжения восьмерок и до нажатия кнопки, это и будет время реакции человека. Остается лишь вычислить среднее арифметическое результатов нескольких измерений.

В данном устройстве используется микроконтроллер фирмы «Atmel» модель «ATtiny2313». На своем борту микросхема имеет два килобайта флэш-памяти, 128 байт оперативной, восьмибитный и десятибитный таймеры, четыре канала широтно-импульсной модуляции (ШИМ), пятнадцать полностью доступных портов ввода-вывода.

Для вывода информации используется семисегментный четырехразрядный светодиодный индикатор с общим анодом. Индикация реализована динамическая, то есть все сегменты всех разрядов соединены параллельно, а общие выводы не параллельны. Таким образом, получается у индикатора двенадцать выводов: четыре вывода - общие для разрядов, остальные восемь распределены так: семь сегментов для цифр и один для точки.

Заключение

Физика - фундаментальная естественная наука, изучение которой позволяет познавать окружающий ребенка мир через деятельность учебную, изобретательскую, конструкторскую, творческую.

Ставя цель: сконструировать физические приборы для использования их в образовательном процессе, я ставил задачу популяризировать физику, как науку не только теоретическую, но и прикладную, среди сверстников, доказывая, что понять, почувствовать, принять окружающий нас мир можно только через познание и творчество. Как гласит пословица «лучше один раз увидеть, чем сто раз услышать», то есть, чтобы хоть чуть-чуть объять необъятный мир, нужно научиться взаимодействовать с ним не только посредством бумаги и карандаша, но и с помощью паяльника и проводов, деталей и микросхем.

Апробация и эксплуатация самодельных приборов доказывает их жизнеустойчивость и конкурентноспособность.

Я бесконечно благодарен тому, что мою жизнь, начиная с трехлетнего возраста, направил в техническое, изобретательско - конструкторское русло мой дедушка, Диденко Николай Андреевич, более двадцати лет преподававший физику и математику в Абадзехской средней школе, и более двадцати лет работавший программистов в научно-техническом центре РОСНЕФТЬ.

Список использованной литературы .

Наливайко Б.А. Справочник Полупроводниковые приборы. Сверхвысокочастотные диоды. МГП "РАСКО" 1992, 223 с.

Мякишев Г. Я., Буховцев Б. Б. Физика 11 класс, М., Просвещение, 2014, 400 с.

Ревич Ю. В. Занимательная электроника.2-е изд-е, 2009 БХВ-Петербург, 720 с

Том Тит. Научные забавы: физика без приборов, химия без лаборатории. М., 2008, 224 с.

Чечик Н. О. Файнштейн С.М. Электронные умножители, ГИТТЛ 1957, 440 с.

Шилов В.Ф. Самодельные приборы по радиоэлектронике, М., Просвещение, 1973, 88 с.

Википедия - свободная энциклопедия. Режим доступа

Краткое содержание: Опыт с монеткой и воздушным шариком. Занимательная физика для детей. Увлекательная физика. Опыты по физике своими руками. Занимательные опыты по физике.

Этот эксперимент - замечательный пример действия центробежной и центростремительной силы.

Для проведения опыта вам понадобятся:

Воздушный шарик (лучше бледной расцветки, чтобы при надувании он как можно лучше просвечивал) - монетка - нитки

План работы:

1. Просуньте монетку внутрь шарика.

2. Надуйте шарик.

3. Перевяжите его ниткой.

4. Возьмите шарик одной рукой за тот конец, где нитка. Совершите несколько вращательных движений рукой.

5. Через какое-то время монетка начнет вращаться по кругу внутри шарика.

6. Теперь второй рукой зафиксируйте шарик снизу в неподвижном положении.

7. Монетка будет продолжать вращаться еще секунд 30 или даже больше.

Объяснении опыта:

При вращении объекта возникает сила, называемая центробежной. Вы катались на карусели? Чувствовали силу, выбрасывающую вас наружу от оси вращения. Это центробежная сила. Когда вы вращаете шарик, на монетку действует центробежная сила, которая прижимает его к внутренней поверхности шара. В то же время на нее воздействует сам шарик, создавая центростремительную силу. Взаимодейстие этих двух сил заставляет вращаться монетку покругу.