Способы получения конических поверхностей. Обработка конических поверхностей на токарном станке Обтачивание конических внутренних и наружных поверхностей

§ 1. Общие сведения
1. Область применения конусов. Наряду с цилиндрическими деталями в машиностроении получили довольно широкое распространение детали с коническими поверхностями. Примерами их могут служить конусы центров, хвостовиков сверл, зенкеров, разверток. Для крепления этих инструментов передние участки отверстий шпинделя и пиноли токарного станка имеют также коническую форму.
Однако область использования конусов не ограничивается режущими инструментами. Конические поверхности имеют многие детали машин.
Широкое использование конических соединений объясняется рядом их преимуществ.
1. Они обеспечивают высокую точность центрирования деталей.
2. При плотном соприкосновении пологих конусов получается неподвижное соединение.
3. Изменяя осевое положение деталей конического соединения, можно регулировать величину зазора между ними.
2. Конус и его элементы. Конус представляет собой геометрическое тело, поверхность которого получается вращением прямой линии (образующей), наклонно расположенной к оси вращения (рис. 129, а).
Точка пересечения образующей с осью называется вершиной конуса.
Плоскости, перпендикулярные к оси конуса, называются, основаниями.
Различают полный и усеченный конусы. Первый расположен между основанием и вершиной, второй - между двумя основаниями (большим и меньшим).
Конус характеризуется следующими элементами: диаметром большего основания D; диаметром меньшего основания d; длиной l; углом уклона а между образующей и осью конуса; углом конуса 2а между противоположными образующими.
Кроме этого, на рабочих чертежах конических деталей часто употребляют понятия конусность и уклон.
Конусностью называется отношение разности диаметров двух перечных сечений конуса к расстоянию между ними. Она опреляется по формуле

Уклоном называется отношение разности радиусов двух поперечных сечений конуса к расстоянию между ними. Его определяют по формуле

Из формул (9) и (10) видно, что уклон равен половине конусности.


Тригонометрически уклон равен тангенсу угла уклона (см. рис. 129, б, треугольник ABC), т. е.

На чертеже (рис. 130) конусность обозначают знаком <, а уклон -, острие которых направляется в сторону вершины конуса. После знака указывается отношение двух цифр. Первая из них соответствует разности диаметров в двух принятых сечениях конуса, вторая для конусности- расстояние между сечениями, для уклона - удвоенной величине этого расстояния.
Конусность и уклон иногда записываются числами десятичной дроби: 6,02; 0,04; 0,1 и т. д. Для конусности эти цифры соответствуют разности диаметров конуса на длине 1 мм, для уклона - разности радиусов на этой же длине.
Для обработки полного конуса достаточно знать два элемента: диаметр основания и длину; для усеченного конуса - три элемента: диаметры большего и меньшего оснований и длину. Вместо одного из указанных элементов может быть задан угол наклона а, уклон или конусность. В этом случае для определения недостающих размеров пользуются вышеприведенными формулами (9), (10) и (11).


Пример 1. Дан конус, у которого d=30 мм, /=500 мм, К=1: 20. Определить больший диаметр конуса.
Решение. Из формулы (9)

Пример 2. Дан конус, у которого D=40 мм, l = 100 мм, а=5 , Определить меньший диаметр конуса.
Решение. Из формулы (11)

По таблице тангенсов находим tg5°=0,087. Следовательно, d=40-2*100Х Х0,87=22,6 мм.
Пример 3. Определить угол уклона а, если на чертеже указаны размеры конуса: D-50 мм, d=30 мм, /=200 мм.
Решение. По формуле (11)

Из таблицы тангенсов находим а=2 50 .
Пример 4. Дан конус, у которого D=60 мм, /=150 мм, К=1: 50. Определить угол уклона а.
Решение. Так как уклон равен половине конусности, можно записать:

По таблице тангенсов находим а=0 30 .
3. Нормальные конусы. Конусы, размеры которых стандартизованы, называются нормальными. К ним относятся конусы Морзе, метрические, конусы для насадных разверток и зенкеров с конусностью 1:50 0, под конические штифты - с конусностью 1:50, для конических резьб с конусностью 1: 16 и др.
Наибольшее распространение в машиностроении получили инструментальные конусы Морзе и метрические, основные размеры которых приведены в табл. 13.

Размеры конусов Морзе выражаются дробными числами. Это объясняется тем, что впервые стандарт на них был принят в дюймовой системе измерения, которая сохранилась до настоящего времени. Конусы Морзе имеют различную конусность (примерно 1 20), метрические конусы одинаковую - 1:20.

Цель работы

1. Знакомство с методами обработки конических поверхностей на токарных станках.

2. Анализ достоинств и недостатков методов.

3. Выбора способа изготовления конической поверхности.

Материалы и оборудование

1. Токарно-винторезный станок модели ТВ-01.

2. Необходимый набор гаечных ключей, режущего инструмента, угломеры, штангенциркуль, заготовки изготавливаемых деталей.

Порядок выполнения работы

1. Прочитайте внимательно основные сведения по теме работы и разберитесь в общих сведениях о конических поверхностях, способах их обработки с учетом основных достоинств и недостатков.

2. С помощью учебного мастера ознакомьтесь со всеми способами обработки конических поверхностей на токарно-винторезном станке.

3. Выполните индивидуальное задание преподавателя по выбору способа изготовления конических поверхностей.

1. Название и цель работы.

2. Схема прямого конуса с указанием основных элементов.

3. Описание основных методов обработки конических поверхностей с приведением схем.

4. Индивидуальное задание с приведением расчетов и обоснования выбора того или иного метода обработки.

Основные положения

В технике часто используются детали с наружными и внутренними коническими поверхностями, например, конические шестерни, ролики конических подшипников. Инструменты для обработки отверстий (сверла, зенкеры, развертки) имеют хвостовики со стандартными конусами Морзе; шпиндели станков имеют конусную расточку под хвостовики инструментов или оправок и т. п.

Обработка деталей с конической поверхностью связана с образованием конуса вращения или усеченного конуса вращения.

Конусом называется тело, образованное всеми отрезками, соединяющими некоторую неподвижную точку с точками окружности в основании конуса.

Неподвижная точка называется вершиной конуса .

Отрезок, соединяющий вершину и любую точку на окружности, называется образующей конуса.

Осью конуса , называется перпендикуляр, соединяющий вершину конуса с основанием, а образующийся отрезок прямой является высотой конуса .

Конус считается прямым или конусом вращения , если ось конуса проходит через центр окружности в его основании.

Плоскость, перпендикулярная оси прямого конуса, отсекает от него меньший конус. Оставшаяся часть называется усеченным конусом вращения .

Усеченный конус характеризуется следующими элементами (рис. 1):

1. D и d – диаметры и большего именьшего оснований конуса;

2. l –высота конуса, расстояние между основаниями конуса;

3. угол конуса 2a – угол между двумя образующими, лежащими в одной плоскости, проходящей через ось конуса;

4. угол уклона конуса a – угол между осью и образующей конуса;

5. уклон У – тангенс угла уклона У = tg a = (D d )/(2l ) , который обозначается десятичной дробью (например: 0,05; 0,02);

6. конусность – определяется по формуле k = (D d )/l , и обозначается с использованием знака деления (например, 1:20; 1:50 и т. д.).

Конусность численно равна удвоенному уклону.

Перед размерным числом, определяющим уклон, наносят знак Ð, острый угол которого направлен в сторону уклона. Перед числом, характеризующим конусность, наносят знак, острый угол которого должен быть направлен в сторону вершины конуса.

В массовом производстве на станках-автоматах для точения конических поверхностей используются копировальные линейки на один неизменный угол наклона конуса, который может изменяться только при переналадке станка с другой копировальной линейкой.

В единичном и мелкосерийном производстве на станках с ЧПУ точение конических поверхностей с любым углом конуса при вершине осуществляется подбором соотношения скоростей продольной и поперечной подачи. На станках, не оснащенных ЧПУ, обработка конических поверхностей может быть произведена четырьмя способами, перечисленными ниже.

Обработка деталей с конической поверхностью связана с образованием конуса, который характеризуется следующими размерами - рисунок слева а): меньшим d и большим D диаметрами и расстоянием L между плоскостями, в которых расположены окружности с диаметрами D и d. Угол α называется углом наклона конуса, а угол 2α - углом конуса. Отношение K=(D-d)/L называется конусностью и обычно обозначается со знаком деления (например, 1: 20 или 1: 50), а в некоторых случаях десятичной дробью (например, 0,05 или 0,02). Отношение y=(D-d)/(2L)=tg α называется уклоном.

Способы обработки конических поверхностей

При обработке валов часто встречаются переходы между обрабатываемыми поверхностями, имеющие коническую форму. Если длина конуса не превышает 50 мм, то его обработку можно производить широким резцом - рисунок слева б). Угол наклона режущей кромки резца в плане должен соответствовать углу наклона конуса на обрабатываемой детали. Резцу сообщают подачу в поперечном или продольном направлении. Для уменьшения искажения образующей конической поверхности и уменьшения отклонения угла наклона конуса необходимо устанавливать режущую кромку резца по оси вращения обрабатываемой детали. Следует учитывать, что при обработке конуса резцом с режущей кромкой длиной более 10-15 мм могут возникнуть вибрации, уровень которых тем выше, чем больше длина обрабатываемой детали, меньше ее диаметр, меньше угол наклона конуса, ближе расположен конус к середине детали, больше вылет резца и меньше прочность его закрепления. В результате вибраций на обрабатываемой поверхности появляются следы и ухудшается ее качество. При обработке широким резцом жестких деталей вибрации могут отсутствовать, но при этом возможно смещение резца под действием радиальной составляющей силы резания, что приводит к нарушению настройки резца на требуемый угол наклона. Смещение резца зависит от режима обработки и направления подачи.

Конические поверхности с большими уклонами можно обрабатывать при повороте верхних салазок суппорта с резцедержателем - рисунок слева в), на угол α, равный углу наклона обрабатываемого конуса. Подача резца производится вручную (рукояткой перемещения верхних салазок), что является недостатком этого метода, поскольку неравномерность ручной подачи приводит к увеличению шероховатости обработанной поверхности. Указанным способом обрабатывают конические поверхности, длина которых соизмерима с длиной хода верхних салазок.

Конические поверхности большой длины с α=8-10 градусов можно обрабатывать при смещении задней бабки - рисунок слева г), величина которого h=L×sin α. Величину смещения задней бабки определяют по шкале, нанесенной на торце опорной плиты со стороны маховика, и риске на торце корпуса задней бабки. Цена деления на шкале обычно 1 мм. При отсутствии шкалы на опорной плите величину смещения задней бабки отсчитывают по линейке, приставленной к опорной плите. Способы контроля величины смещения задней бабки показаны на рисунке справа. В резцедержателе закрепляют упор, рисунок а) или индикатор, рисунок б). В качестве упора может быть использована тыльная сторона резца. Упор или индикатор подводят к пиноли задней бабки, фиксируют их исходное положение по лимбу рукоятки поперечной подачи или по стрелке индикатора, а затем отводят. Заднюю бабку смещают на величину больше h, a упор или индикатор передвигают (рукояткой поперечной подачи) на величину h от исходного положения. Затем заднюю бабку смещают в сторону упора или индикатора, проверяя ее положение по стрелке индикатора или по тому, насколько плотно зажата полоска бумаги между упором и пинолью. Положение задней бабки для обработки конической поверхности можно определить по готовой детали. Готовую деталь (или образец) устанавливают в центрах станка и заднюю бабку смещают до тех пор, пока образующая конической поверхности не окажется параллельной направлению продольного перемещения суппорта. Для этого индикатор устанавливают в резцедержатель, подводят к детали до соприкосновения и перемещают (суппортом) вдоль образующей детали. Заднюю бабку смещают до тех пор, пока отклонения стрелки индикатора не будут минимальными, после чего закрепляют.

Для обеспечения одинаковой конусности партии деталей, обрабатываемых этим способом, необходимо, чтобы размеры заготовок и их центровых отверстий имели незначительные отклонения. Поскольку смещение центров станка вызывает износ центровых отверстий заготовок, рекомендуется обработать конические поверхности предварительно, затем исправить центровые отверстия и после этого произвести окончательную чистовую обработку. Для уменьшения разбивки центровых отверстий и износа центров целесообразно последние выполнять со скругленными вершинами.

Распространенной является обработка конических поверхностей с применением копирных устройств. К станине станка крепится плита 1, рисунок слева а), с копирной линейкой 2, по которой перемещается ползун 5, соединенный с суппортом 6 станка тягой 7 с помощью зажима 8. Для свободного перемещения суппорта в поперечном направлении необходимо отсоединить винт поперечной подачи. При продольном перемещении суппорта 6 резец получает два движения: продольное от суппорта и поперечное от копирной линейки 2. Величина поперечного перемещения зависит от угла поворота копирной линейки 2 относительно оси 3 поворота. Угол поворота линейки определяют по делениям на плите 1, фиксируют линейку болтами 4. Подачу резца на глубину резания производят рукояткой перемещения верхних салазок суппорта. Обработку конической поверхности 4, рисунок слева б), производят по копиру 3, установленному в пиноли задней бабки или в револьверной головке станка. В резцедержателе поперечного суппорта устанавливают приспособление 1 с копирным роликом 2 и остроконечным проходным резцом. При поперечном перемещении суппорта копирный ролик 2 в соответствии с профилем копира 3 получает продольное перемещение, которое передается (через приспособление 1) резцу. Наружные конические поверхности обрабатываются проходными, а внутренние конические поверхности - расточными резцами.

Для получения конического отверстия в сплошном материале, рисунок справа, заготовку обрабатывают предварительно (сверлят, растачивают), а затем окончательно (развертывают). Развертывание выполняют последовательно комплектом конических разверток - рисунок внизу. Диаметр предварительно просверленного отверстия на 0,5-1 мм меньше заходного диаметра развертки. Формы режущих кромок и работа разверток: режущие кромки черновой развертки - а) имеют форму уступов; получистовая развертка - б) снимает неровности, оставленные черновой разверткой; чистовая развертка - в) имеет сплошные режущие кромки по всей длине и калибрует отверстие. Если требуется коническое отверстие высокой, точности, то его перед развертыванием обрабатывают коническим зенкером, для чего в сплошном материале сверлят отверстие диаметром на 0,5 мм меньше, чем диаметр конуса, а затем применяют зенкер. Для уменьшения припуска под зенкерование иногда применяют ступенчатые сверла разного диаметра.

К коническим относятся поверхности, образованные перемещением прямолинейной образующей l по криволинейной направляющей т. Особенностью образования конической поверхности является то, что

Рис. 95

Рис. 96

при этом одна точка образующей всегда неподвижна. Эта точка является вершиной конической поверхности (рис. 95, а). Определитель конической поверхности включает вершину S и направляющую т, при этом l "~S; l "^ т.

К цилиндрическим относятся поверхности, образованные прямой образующей /, перемещающейся по криволинейной направляющей т параллельно заданному направлению S (рис. 95, б). Цилиндрическую поверхность можно рассматривать как частный случай конической поверхности с бесконечно удаленной вершиной S.

Определитель цилиндрической поверхности состоит из направляющей т и направления S, образующих l , при этом l" || S; l" ^ т.

Если образующие цилиндрической поверхности перпендикулярны плоскости проекций, то такую поверхность называют проецирующей. На рис. 95, в показана горизонтально проецирующая цилиндрическая поверхность.

На цилиндрической и конической поверхностях заданные точки строят с помощью образующих, проходящих через них. Линии на поверхностях, например линия а на рис. 95, в или горизонтали h на рис. 95, а, б, строятся с помощью отдельных точек, принадлежащих этим линиям.

Поверхности вращения

К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i, представляющей собой ось вращения. Они могут быть линейчатыми, например конус или цилиндр вращения, и нелинейчатыми или криволинейными, например сфера. Определитель поверхности вращения включает образующую l и ось i.

Каждая точка образующей при вращении описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности поверхности вращения называются параллелями. Наибольшую из параллелей называют экватором. Экватор.определяет горизонтальный очерк поверхности, если i _|_ П 1 . В этом случае параллелями являются горизонтали hэтой поверхности.

Кривые поверхности вращения, образующиеся в результате пересечения поверхности плоскостями, проходящими через ось вращения, называются меридианами. Все меридианы одной поверхности конгруэнтны. Фронтальный меридиан называют главным меридианом; он определяет фронтальный очерк поверхности вращения. Профильный меридиан определяет профильный очерк поверхности вращения.

Строить точку на криволинейных поверхностях вращения удобнее всего с помощью параллелей поверхности. На рис. 103 точка М построена на параллели h 4 .

Поверхности вращения нашли самое широкое применение в технике. Они ограничивают поверхности большинства машиностроительных деталей.

Коническая поверхность вращения образуется вращением прямой i вокруг пересекающейся с ней прямой - оси i (рис. 104, а). Точка М на поверхности построена с помощью образующей l и параллели h. Эту поверхность называют еще конусом вращения или прямым круговым конусом.

Цилиндрическая поверхность вращения образуется вращением прямой l вокруг параллельной ей оси i (рис. 104, б). Эту поверхность называют еще цилиндром или прямым круговым цилиндром.

Сфера, образуется вращением окружности вокруг ее диаметра (рис. 104, в). Точка A на поверхности сферы принадлежит главному

Рис. 103

Рис. 104

меридиану f, точка В - экватору h, а точка М построена на вспомогательной параллели h".

Тор образуется вращением окружности или ее дуги вокруг оси, лежащей в плоскости окружности. Если ось расположена в пределах образующейся окружности, то такой тор называется закрытым (рис. 105, а). Если ось вращения находится вне окружности, то такой тор называется открытым (рис. 105, б). Открытый тор называется еще кольцом.

Поверхности вращения могут быть образованы и другими кривыми второго порядка. Эллипсоид вращения (рис. 106, а) образуется вращением эллипса вокруг одной из его осей; параболоид вращения (рис. 106, б) - вращением параболы вокруг ее оси; гиперболоид вращения однополостный (рис. 106, в) образуется вращением гиперболы вокруг мнимой оси, а двуполостный (рис. 106, г) - вращением гиперболы вокруг действительной оси.

В общем случае поверхности изображаются не ограниченными в направлении распространения образующих линий (см. рис. 97, 98). Для решения конкретных задач и получения геометрических фигур ограничиваются плоскостями обреза. Например, чтобы получить круговой цилиндр, необходимо ограничить участок цилиндрической поверхности плоскостями обреза (см. рис. 104, б). В результате получим его верхнее и нижнее основания. Если плоскости обреза перпендикулярны оси вращения, цилиндр будет прямым, если нет - цилиндр будет наклонным.

Рис. 105

Рис. 106

Чтобы получить круговой конус (см. рис. 104, а), необходимо выполнить обрез по вершине и за пределами ее. Если плоскость обреза основания цилиндра будет перпендикулярна оси вращения - конус будет прямой, если нет - наклонный. Если обе плоскости обреза не проходят через вершину - конус получим усеченным.

С помощью плоскости обреза можно получить призму и пирамиду. Например, шестигранная пирамида будет прямой, если все ее ребра имеют одинаковый наклон к плоскости обреза. В других случаях она будет наклонной. Если она выполнена с помощью плоскостей обреза и ни одна из них не проходит через вершину - пирамида усеченная.

Призму (см. рис. 101) можно получить, ограничив участок призматической поверхности двумя плоскостями обреза. Если плоскость обреза перпендикулярна ребрам, например восьмигранной призмы, она прямая, если не перпендикулярна - наклонная.

Выбирая соответствующее положение плоскостей обреза, можно получать различные формы геометрических фигур в зависимости от условий решаемой задачи.

Вопрос 22

Параболо́ид ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка.

Канонические уравнения параболоида в декартовых координатах:

2z=x 2 /p+y 2 /q

Если p и q одного знака, то параболоид называется эллиптическим.

если разного знака, то параболоид называется гиперболическим.

если один из коэффициентов равен нулю, то параболоид называется параболическим цилиндром.

Эллиптический параболойд

2z=x 2 /p+y 2 /q

Эллиптический параболойд если p=q

2z=x 2 /p+y 2 /q

Гиперболический параболойд

2z=x 2 /p-y 2 /q


Параболический цилиндр 2z=x 2 /p(или 2z=y 2 /q)

Вопрос23

Вещественное линейное пространство называется Эвклидовым , если в нем определена операция скалярного умножения : любым двум векторам x и y сопоставлено вещественное число (обозначаемое (x,y) ), и это соответственно удовлетворяет следующим условиям, каковы бы ни были векторы x,y и z и число C:

2. (x+y , z)=(x , z)+(y , z)

3. (Cx , y)= C(x, y)

4. (x, x)>0 , если x≠0

Простейшие следствия из вышеуказанных аксиом:

1. (x, Cy)=(Cy, x)=C(y, x) следовательно всегда (X, Cy)=C(x, y)

2. (x, y+z)=(x, y)+ (x, z)

3. ()= (x i , y)

()= (x , y k)

Общие сведения о конусах. Коническая поверхность характеризуется следующими параметрами (рис. 4.31): меньшим d и большим D диаметрами и расстоянием 1 между плоскостями, в которых расположены окружности диаметрами D u d. Угол а называется углом наклона конуса, а угол 2α - углом конуса.

Рис. 4.31. Геометрия конуса:
d и D - меньший и больший диаметры; l - расстояние между плоскостями; α - угол наклона конуса; 2α - угол конуса

Отношение K = (D - d)/l называется конусностью и обычно обозначается со знаком деления (например, 1:20 или 1:50), а в некоторых случаях - десятичной дробью (например, 0,05 или 0,02).

Отношение Y = (D - d)/(2l) = tgα называется уклоном.

Способы обработки конических поверхностей . При обработке валов часто встречаются переходы между поверхностями, имеющие коническую форму. Если длина конуса не превышает 50 мм, то его обработку можно производить врезанием широким резцом. Угол наклона режущей кромки резца в плане должен соответствовать углу наклона конуса на обработанной детали. Резцу сообщают поперечное движение подачи.

Для уменьшения искажения образующей конической поверхности и уменьшения отклонения угла наклона конуса необходимо устанавливать режущую кромку резца по оси вращения обрабатываемой детали.

Следует учитывать, что при обработке конуса резцом с режущей кромкой длиной более 15 мм могут возникнуть вибрации, уровень которых тем выше, чем больше длина обрабатываемой детали, меньше ее диаметр, меньше угол наклона конуса, чем ближе расположен конус к середине детали, чем больше вылет резца и меньше прочность его закрепления. В результате вибраций на обрабатываемой поверхности появляются следы и ухудшается ее качество. При обработке широким резцом жестких деталей вибрации могут отсутствовать, но при этом возможно смещение резца под действием радиальной составляющей силы резания, что приводит к нарушению настройки резца на требуемый угол наклона. (Смещение резца зависит от режима обработки и направления движения подачи.)

Конические поверхности с большими уклонами можно обрабатывать при повороте верхних салазок суппорта с резцедержателем (рис. 4.32) на угол а, равный углу наклона обрабатываемого конуса. Подача резца производится вручную (рукояткой перемещения верхних салазок), что является недостатком этого метода, поскольку неравномерность ручной подачи приводит к увеличению шероховатости обработанной поверхности. Указанным способом обрабатывают конические поверхности, длина которых соизмерима с длиной хода верхних салазок.

Рис. 4.32. Обработка конической поверхности путем поворота верхних салазок суппорта:
2α - угол конуса; α - угол наклона конуса

Коническую поверхность большой длины с углом 8...10° можно обрабатывать при смещении задней бабки (рис. 4.33)

При малых углах sinα ≈ tgα

h = L(D - d)/(2l),

где L - расстояние между центрами; D - больший диаметр; d - меньший диаметр; l - расстояние между плоскостями.

Если L = l, то h = (D - d)/2.

Смещение задней бабки определяют по шкале, нанесенной на торце опорной плиты со стороны маховика, и риске на торце корпуса задней бабки. Цена деления на шкале обычно 1 мм. При отсутствии шкалы на опорной плите смещение задней бабки отсчитывают по линейке, приставленной к опорной плите.

Рис. 4.33. Обработка конической поверхности путем смещения задней бабки: d и D - меньший и больший диаметры; l - расстояние межау плоскостями; h - расстояние между центрами; h - смещение заднего центра; α - угол наклона конуса

Для обеспечения одинаковой конусности партии деталей, обрабатываемых этим способом, необходимо, чтобы размеры заготовок и их центровых отверстий имели незначительные отклонения. Поскольку смещение центров станка вызывает износ центровых отверстий заготовок, рекомендуется обработать конические поверхности предварительно, затем исправить центровые отверстия и после этого произвести окончательную чистовую обработку. Для уменьшения разбивки центровых отверстий и износа центров целесообразно последние выполнять со скругленными вершинами.

Достаточно распространенной является обработка конических поверхностей с применением копирных устройств. К станине станка крепится плита 7 (рис. 4.34, а) с копирной линейкой 6, по которой перемещается ползун 4, соединенный с суппортом 1 станка тягой 2 с помощью зажима 3. Для свободного перемещения суппорта в поперечном направлении необходимо отсоединить винт поперечного движения подачи. При продольном перемещении суппорта 1 резец получает два движения: продольное от суппорта и поперечное от копирной линейки 6. Поперечное перемещение зависит от угла поворота копирной линейки 6 относительно оси 5 поворота. Угол поворота линейки определяют по делениям на плите 7, фиксируя линейку болтами 8. Движение подачи резца на глубину резания производят рукояткой перемещения верхних салазок суппорта. Наружные конические поверхности обрабатывают проходными резцами.

Рис. 4.34. Обработка конической поверхности с применением копирных устройств:
а - при продольном перемещении суппорта: 1 - суппорт; 2 - тяга; 3 - зажим; 4 - ползун; 5 - ось; 6 - копирная линейка; 7 - плита: 8 - болт; б - при поперечном перемещении суппорта: 1 - приспособление; 2 - копир; 3 - копир-ный ролик; 4 - внутренняя коническая поверхность; α - угол поворота копирной линейки

Способы обработки внутренних конических поверхностей . Обработку внутренней конической поверхности 4 заготовки (рис. 4.34, б) производят по копиру 2, установленному в пиноли задней бабки или в револьверной головке станка. В резцедержателе поперечного суппорта устанавливают приспособление 1 с копирным роликом 3 и остроконечным проходным резцом. При поперечном перемещении суппорта копирный ролик 3 в соответствии с профилем копира 2 получает продольное перемещение, которое через приспособление 1 передается резцу. Внутренние конические поверхности обрабатывают расточными резцами.

Для получения конического отверстия в сплошном материале заготовку сначала обрабатывают предварительно (сверлят, растачивают), а затем окончательно (развертывают). Развертывание выполняют последовательно комплектом конических разверток. Диаметр предварительно просверленного отверстия на 0,5...1 мм меньше заходного диаметра развертки.

Если требуется коническое отверстие высокой точности, то его перед развертыванием обрабатывают коническим зенкером, для чего в сплошном материале сверлят отверстие диаметром на 0,5 мм меньше, чем диаметр конуса, а затем применяют зенкер. Для уменьшения припуска под зенкерование иногда применяют ступенчатые сверла разного диаметра.

Обработка центровых отверстий . В деталях типа валов часто выполняют центровые отверстия, которые используют для последующей токарной и шлифовальной обработки детали и для восстановления ее в процессе эксплуатации. На основании этого центровку выполняют особенно тщательно.

Центровые отверстия вала должны находиться на одной оси и иметь одинаковые конусные отверстия на обоих торцах независимо от диаметров концевых шеек вала. При невыполнении этих требований снижается точность обработки и увеличивается износ центров и центровых отверстий.

Конструкции центровых отверстий приведены на рис. 4.35. Наибольшее распространение имеют центровые отверстия с углом конуса 60°. Иногда в тяжелых валах этот угол увеличивают до 75 или 90°. Для того чтобы вершина центра не упиралась в заготовку, в центровых отверстиях выполняют цилиндрические углубления диаметром d.

Рис. 4.35. Центровые отверстия:
1 - незащищенные от повреждений; б - защищенные от повреждений

Для защиты от повреждений центровые отверстия многократного использования выполняют с предохранительной фаской под углом 120° (рис. 4.35, б).

Для обработки центровых отверстий в небольших заготовках применяют различные методы. Заготовку закрепляют в самоцент-рирующем патроне, а в пиноль задней бабки вставляют сверлильный патрон с центровочным инструментом. Центровые отверстия больших размеров обрабатывают сначала цилиндрическим сверлом (рис. 4.36, а), а затем однозубой (рис. 4.36, б) или многозубой (рис. 4.36, в) зенковкой. Центровые отверстия диаметром 1,5...5 мм обрабатывают комбинированными сверлами без предохранительной фаски (рис. 4.36, г) и с предохранительной фаской (рис. 4.36, д).

Рис. 4.36. Центровые инструменты:
а - цилиндрическое сверло; б - однозубая зенковка; в - многозубая зенковка; г - комбинированное сверло без предохранительной фаски; д - комбинированное сверло с предохранительной фаской

Центровые отверстия обрабатывают при вращающейся заготовке; движение подачи центровочного инструмента осуществляют вручную (от маховика задней бабки). Торец, в котором обрабатывают центровое отверстие, предварительно подрезают резцом.

Необходимый размер центрового отверстия определяют по углублению центровочного инструмента, используя лимб маховика задней бабки или шкалу пиноли. Для обеспечения соосности центровых отверстий деталь предварительно размечают, а длинные детали при зацентровке поддерживают люнетом.

Центровые отверстия размечают с помощью угольника.

После разметки производят накернивание центрового отверстия. Если диаметр шейки вала не превышает 40 мм, то можно производить накернивание центрового отверстия без предварительной разметки с помощью приспособления, показанного на рис. 4.37. Корпус 1 приспособления устанавливают левой рукой на торце вала 3 и ударом молотка по кернеру 2 намечают центр отверстия.

Рис. 4.37. Приспособление для накернивания центровых отверстий без предварительной разметки:
1 - корпус; 2 - кернер; 3 - вал

Если в процессе работы конические поверхности центровых отверстий были повреждены или неравномерно изношены, то допускается их исправление резцом. В этом случае верхнюю каретку суппорта поворачивают на угол конуса.

Контроль конических поверхностей . Конусность наружных поверхностей измеряют шаблоном или универсальным угломером. Для более точных измерений применяют калибры-втулки (рис. 4.38), с помощью которых проверяют не только угол конуса, но и его диаметры. На обработанную поверхность конуса карандашом наносят две-три риски, затем на измеряемый конус надевают калибр-втулку, слегка нажимая на нее и поворачивая ее вдоль оси. При правильно выполненном конусе все риски стираются, а конец конической детали находится между метками А и В.

Рис. 4.38. Калибр-втулка для проверки наружных конусов (а) пример ее применения (б):
А, В - метки

При измерении конических отверстий применяют калибр-пробку. Правильность обработки конического отверстия определяется (как и при измерении наружных конусов) взаимным прилеганием поверхностей детали и калибра-пробки. Если тонкий слой краски, нанесенный на калибр-пробку, сотрется у малого диаметра, то угол конуса в детали велик, а если у большого диаметра - угол мал.

Контрольные вопросы

  1. Что называют конусностью и как она обозначается?
  2. Какие существуют методы обработки наружных конических поверхностей?
  3. Какие существуют методы обработки внутренних конических поверхностей?
  4. Расскажите, как обрабатывают центровые отверстия.
  5. Расскажите, как производят контроль конических поверхностей.