Урок: "Древесина - конструкционный природный материал". "древесина как природный конструкционный материал" Используй шило по назначению

Основные свойства древесины как конструкционного материала. Достоинства и недостатки.

Физические свойства

Плотность.

Температурное расширение. α

Теплопроводность λ ≈ 0,14Вт/м∙ºС.

.

Теплоемкость С = 1,6КДЖ/кг∙ºС.

Механические свойства древесины

прочностью - способностью сопротивляться разрушению от механических воздействий; жесткостью - способностью сопротивляться изменению размеров и формы; твердостью - способностью сопротив­ляться проникновению другого твердого тела; ударной вязкостью - способностью погло­щать работу при ударе.

Древесина, как и другие строительные материалы, имеет свои достоинства и недос­татки.

Достоинства:

Наличие широкой, постоянно возобновляемой сырьевой базы;

Относительно малая плотность;

Высокая удельная прочность - отношение предела прочности при растяжении вдоль волокон к плотности: 100/500 = 0,2 (примерно равная стали);

Стойкость к солевой агрессии, к воздействию других химически агрессивных сред;

Биологическая совместимость с человеком и животными - в зданиях из древесины наилучший микроклимат;

Высокие эстетические и акустические свойства - лучшие концертные залы страны облицованы древесиной;

Малый коэффициент теплопроводности поперек волокон - стена из бруса шириной 200 мм эквивалентна по теплопроводности кирпичной стене шириной 640 мм;

Малый коэффициент линейного расширения вдоль волокон - в деревянных зданиях нет необходимости устраивать температурные швы и подвижные опоры;

Меньшая трудоемкость механической обработки, возможность создания гнутоклееных конструкций.

Недостатки:

Анизотропия строения древесины;

Подверженность загниванию и поражению жуками-древоточцами;

Сгораемость в условиях пожара;

Изменение физико-механических характеристик под воздействием различных фак­торов (влаги, температуры);

Усушка, разбухание, коробление и растрескивание под влиянием атмосферных воздействий;

Наличие пороков (сучки, косослой и других), существенно снижающих качество изделий и конструкций;

Ограниченность сортамента лесоматериалов.

Виды конструкционных пластмасс Их физико-механические характеристики. Достоинства и недостатки. Область применения.

В зависимости от вида смол под влиянием на них температуры, пластмассы делятся на два вида: а) термопластичные пластмассы (или термопласты) на основе термопластичных смол; б) термореактивные (реапласты) на основе термореактивных смол.

Термопластичные пластмассы обычно называются по связующему веществу, исходя из наименования мономера с добавлением приставки «поли-»(поливинилхлорид, полиэтилен, полистирол и др.)

Термореактивные - по виду наполнителя (стеклопластики, древесные пластики и др.)

В зависимости от структуры пластмассы можно разделить на две основные группы:

1) пластмассы без наполнителя (не наполненные);

2) пластмассы с наполнителем (наполненные).

К пластмассам, которые находят и будут находить в будущем наибольшее применение в строительных конструкциях относятся стеклопластики, оргстекло, винипласт, полиэтилен, тепло- и звукоизоляционные материалы, древесные пластики.

Стеклопластики.

Стеклопластики представляют собой материалы, состоящие из стекловолокнистого наполнителя и связующего.

В качестве связующего обычно используются термореактивные смолы (полиэфирная, эпоксидная, фенолоформальдегидная). Стеклянное волокно является армирующим элементом, прочность которого достигает 1000-2000 МПа. Основой стекловолокон являются элементарные волокна.

Элементарные волокна (первичные нити) получают из расплавленной стеклянной массы, вытягивая ее через небольшие отверстия- фильеры; элементарные волокна (порядка 200) диаметром 6-20 мкм объединяют в нити, а несколько десятков нитей- в жгуты (крученые нити).

В стеклопластиках, применяемых в строительстве, используют следующие стекловолокнистые наполнители:

а) прямолинейные непрерывные волокна, вводимые в виде жгутов, нитей или элементарных волокон.

б) рубленое стекловолокно в виде хаотически расположенных отрезков длиной приблизительно 50 мм.

Механические свойства стеклопластиков зависят от вида стекловолокнистого наполнителя. Наиболее высокими механическими свойствами обладают стеклопластики, армированные непрерывным прямолинейным стекловолокном. В направлении волокон их прочность достигает 1000 МПа при растяжении, а модуль упругости до 40000 МПа, однако, в поперечном направлении прочность стеклопластиков не велика (примерно в 10 раз меньше).

Все стеклопластики, армированные в одном или в двух взаимноперпендикулярных направлениях, являются материалами анизотропными.

Стеклопластики, армированные рубленым стекловолокном, являются изотропными материалами.

Существуют следующие виды стеклопластиков:

1) Пресс - материалы типа СВАМ (стекловолокнистый анизотропный пресс- материал) является одним из первых высокопрочных стеклопластиков, полученных путем прессования стеклошпонов (шпонов из однонаправленного стекловолокна).

Получают его таким образом: после намотки определенного числа слоев пропитанной нити однонаправленный материал срезают. В развертке он представляет собой квадратный лист размером 3х3 м 2 . Затем поворачивают лист на 90 градусов и вновь наматывают слой нитей. Таким образом, получается стеклошпон с взаимно-перпендикулярным расположением волокон. Предел прочности СВАМ при растяжении и сжатии составляет 400-500 МПа, а при изгибе, приблизительно, 700 МПа.

2) Пресс - материалы АГ-4С и АГ-4В.

АГ-4С представляет собой однонаправленную ленту, полученную на основе крученых стеклянных нитей и аминофинолоформальдегидной смолы. АГ-4С предназначается для получения высокопрочных изделий методом прямого прессования или намотки.

Пределы прочности при сжатии и изгибе ниже, чем у СВАМ – 200-250 МПа, а при растяжении несколько выше.

Пресс – материал типа АГ-4В представляет собой стекловолокнит на основе срезов первичной нити. Специально подготовленный стекловолокнистый наполнитель смешивают с фенолоформальдегидной смолой, затем сушат.

Стеклопластики типа СВАМ, АГ-4С и АГ-4В используют для изготовления соединительных деталей (болтов, фасонок) и для профильных изделий, эксплуатируемых в химически агрессивных средах, где металл быстро корродирует. Все перечисленные стеклопластики являются светонепроницаемыми. Однако, в строительстве чаще всего применяют светопрозрачные стеклопластики. У нас в стране в больших объемах выпускается светопроницаемый полиэфирный листовой стеклопластик.

3) Полиэфирный стеклопластик изготавливают на основе рубленого стекловолокна и прозрачных полиэфирных смол, благодаря которым полиэфирный стеклопластик является светопроницаемым. Выпускается он в изделиях в виде волнистых или плоских листов, часто имеющих различные окраски. Прочностные характеристики существенно ниже, чем у предыдущих материалов, и составляют 60-90 МПа при растяжении и сжатии.

Полиэфирные стеклопластики получили широкое применение в ограждающих конструкциях (стеновые и кровельные панели), лестничных ограждениях и балконных ограждениях, навесах т.п. конструкциях. Весьма перспективны стеклопластики для совмещенных пространственных конструкций.

Древесные пластики.

Материалы, полученные на основе переработки натуральной древесины, соединенные синтетическими смолами называют древесными пластиками.

Древеснослоистые пластики (ДСП) изготавливают из тонких листов березового (иногда ольхового, липового или букового) шпона, пропитанного смолой и запрессованного при высоком давлении 150-180 кг\см 2 и температуре t=145-155ºC.

В зависимости от взаимного расположения слоев шпона в пакете, различают 4 основных марки ДСП:

ДСП-А – все слои параллельны друг другу, ДСП-Б – через каждые 10-12 параллельных слоев один поперечный, ДСП-В – перекрестное расположение, причем наружные слои располагаются вдоль плиты, ДСП-Г – звездообразная, каждый слой смещен по отношению к предыдущему на 25-30º.

Во всех случаях прочность ДСП превышает прочность цельной древесины, а для некоторых марок при действии усилий вдоль волокон шпона не уступает прочности стали.

В настоящее время в связи еще с высокой стоимостью ДСП, он применяется в основном для изготовления средств соединения элементов конструкций.

Древесноволокнистые плиты (ДВП) изготавливают из хаотически расположенных волокон древесины (опилок), склеенных канифольной эмульсией. Сырьем для ДВП являются отходы лесопиления и деревообработки. Для изготовления твердых и сверхтвердых плит в древесноволокнистую массу добавляют фенолоформальдегидную смолу. При длительном действии влажной среды, древесноволокнистая плита весьма гигроскопична, набухает по толщине и теряет прочность, поэтому во влажных условиях применять ДВП не рекомендуется. Прочность сверхтвердых плит ДВП плотностью не менее 950 кг\м 3 при растяжении составляет около 25 МПа.

Древесностружечные плиты (ПС и ПТ) получают путем горячего прессования древесных стружек, перемешанных, вернее опыленных фенолоформальдегидными смолами.

Древесностружечные плиты в зависимости от плотности подразделяют на:

Легкие γ=350-500 кг\м 3

Средние ПС γ=500-650 кг\м 3

Тяжелые ПТ γ=650-800 кг\м 3

Прочность плит ПТ и ПС при растяжении составляет соответственно 3,6-2,9 МПа и 2,9-2,1 МПа. ПС и ПТ являются дешевым и доступным материалом, он широко используется в строительстве в качестве перегородок, подвесных потолков. Влагопоглощение плит колеблется в широких пределах, при этом они разбухают по толщине на 30-40%.

Воздухонепроницаемые ткани - новый, необычный конструкционный материал, состоящий из текстиля и эластичных покрытий.

Технический текстиль является прочностной основой воздухонепроницаемых тканей. Он изготовляется из высокопрочных синтетических волокон. Полиамидные волокна типа «капрон» применяются наиболее широко. Они имеют высокую прочность, значительную растяжимость и малую стойкость против старения. Полиэфирные волокна типа «лавсан» менее растяжимы и более стойки против старения.

достоинств этого материала:

недостатки

Применение пластмасс в качестве материала для строительных конструкций объясняется рядом достоинств этого материала:

Высокой прочностью, составляющей для большинства пластмасс (кроме пенопластов) 50-100 НПа, а для некоторых стеклопластиков прочность достигает 1000 НПа;

Малой прочностью (объемной массой) находящихся в пределах от 20 (для пенопластов) до 2000 кг\м 3 (для стеклопластиков);

Стойкостью к воздействию химически агрессивных сред;

Биостойкостью (неподверженность гниению);

Простотой формообразования и легкой обрабатываемостью;

Высокими электроизоляционными свойствами и некоторыми другими положительными свойствами.

Вместе с тем пластмассы имеют и недостатки , такие, например, как деформативность, ползучесть и падение прочности при длительных нагрузках, старение (ухудшение эксплуатационных свойств во времени), сгораемость, использование в качестве сырья дефицитных нефтепродуктов.

Влияние недостатков пластмасс можно уменьшить разными путями. Так, уменьшение деформативности добиваются применением рациональных форм поперечного сечения конструкций (трехслойные, трубчатые).

Сгораемость и старение можно уменьшить путем введения специальных добавок.

Физические свойства

Плотность. Древесина относится к классу легких конструкционных материалов. Ее плотность зависит от относительного объема пор и содержания в них влаги. Стандартная плотность древесины должна определяться при влажности 12%. Свежерубленая древесина имеет плотность 850 кг/м 3 . Расчетная плотность древесины хвойных пород в составе конструкций в помещениях со стандартной влажностью воздуха 12% принимают равной 500 кг/м 3 ., в помещении с влажностью воздуха более 75% и на открытом воздухе – 600 кг/м 3 .

Температурное расширение. Линейное расширение при нагревании, характеризуемое коэффициентом линейного расширения, в древесине различно вдоль и под углами к волокнам. Коэффициент линейного расширения α вдоль волокон составляет (3 ÷ 5) ∙ 10 -6 , что позволяет строить деревянные здания без температурных швов. Поперек волокон древесины этот коэффициент меньше в 7 – 10 раз.

Теплопроводность древесины благодаря ее трубчатому строению очень мала, особенно поперек волокон. Коэффициент теплопроводности сухой древесины поперек волокон λ ≈ 0,14Вт/м∙ºС. Брус толщиной 15 см эквивалентен по теплопроводности кирпичной стене толщиной в 2,5 кирпича (51 см)воле, а так жетакже при распиловке бревен в результате их сбега.

ластями, опильных станках. .- торцами.ниванию, чем хвой .

Теплоемкость древесины значительна, коэффициент теплоемкости сухой древесины составляет С = 1,6КДЖ/кг∙ºС.

Еще одним ценным свойством древесины является ее стойкость ко многим химическим и биологическим агрессивным среда. Она является химически более стойким материалом, чем металл и железобетон. При обычной температуре плавиковая, фосфорная и соляная (низкой концентрации) кислоты не разрушают древесину. Большинство органических кислот при обычной температуре не ослабляют древесину, поэтому она часто используется для конструкций в условиях химически агрессивных сред.

Механические свойства древесины характеризуются: прочностью - способностью сопротивляться разрушению от механических воздействий; жесткостью - способностью сопротивляться изменению размеров и формы; твердостью - способностью сопротив­ляться проникновению другого твердого тела; ударной вязкостью - способностью погло­щать работу при ударе.

Для изготовления деревянных несущих конструкций обычно применяют лесные материалы хвойных пород: сосну, ель, лиственницу, кедр и пихту. Среди лесных насаждений России хвойные леса наиболее распространены. Древесина хвойных пород превосходит по прочности древесину большинства распространенных лиственных пород и меньше подвержена загниванию. Стволы хвойных деревьев имеют более правильную форму, что позволяет полнее использовать их объем. Наиболее часто используется сосна.

Сосна, по месту произрастания делится на сосну мяндовую и сосну рудовую. Мяндовая предпочитает низменные почвы, древесина ее неплотная, рыхлая, менее слоистая чем у рудовой сосны и поэтому склонна к загниванию во влажной среде. Она очень хорошо обрабатывается, прекрасно пропитывается и мало подвержена короблению. Рудовая сосна, в отличие от мяндовой, произрастает на холмах, различных возвышенностях и предпочитает каменистую суглинистую или супесчаную почву. Древесина ее смолиста и мелкослойна, обладает достаточно высокой плотностью. Именно эти качества обеспечили рудовой сосне достойное место в сфере домостроительных технологий (полы, конструкции крыш, стены, внутренние перегородки).

Ельпо ряду характеристик уступает сосне. Она хуже обрабатывается, менее плотная и менее прочная, чем сосна. Существенно ухудшает потребительские свойства ели ее сучковатость и повышенная твердость. Склонность древесины ели к загниванию ограничивает ее использование в местах, подверженных влиянию влаги. В домостроении ель используется в изготовлении дверных блоков, полов, внутренних перегородок, мебели.

Лиственница отличается высокой плотностью, устойчивостью против гниения, твердостью. Последнее существенно затрудняет обработку лиственницы, что в какой-то мере ограничивает ее применение в строительстве. Но остальные качества, плюс обладание высокой стойкостью от коробления обеспечивают лиственнице репутацию ценного строительного материала.

Лиственница, как никакой другой материал, требует очень умеренного режима сушки с соблюдением всех мер предосторожности. Дело в том, что при интенсивной сушке в лиственнице появляются трещины. В домостроении лиственница применяется прежде всего там, где требуется высокая устойчивость против гниения. Кроме этого лиственница зарекомендовала себя как хороший материал для изготовления паркетных планок.

Кедр сибирскийпо своим физико-механическим свойствам занимает промежуточное место между елью и пихтой. Древесина у кедра мягкая, легкая, хорошо подвергается обработке. При специальной обработке приобретает повышенную стойкость против гниения. В домостроении задействуется в основном там же, где и сосна. Но это хороший материал и для узлов и конструкций, испытывающих перепады влажностного и температурного режимов.

Пихта сибирскаяпо своим качествам сходна с древесиной ели, но уступает ей по прочности и плотности. И в чем не уступает ели только пихта кавказская. Применение пихты довольно распространенное (особенно пихты кавказской). Это и дверные и оконные блоки, полы, плинтуса, раскладки, фризы и много других изделий. Во внешних деревянных конструкциях пихта не задействуется ввиду низкой стойкости против загнивания.

Применение древесины твердых лиственных пород (дуба, бука, ясеня, граба, клена) допускается лишь в тех районах, где эти породы являются местным строительным материалом.

Дуб черешчатый (летний)обладает большой прочностью и стойкостью против загнивания и употребляется главным образом на мелкие ответственные части деревянных конструкций в виде нагелей, шпонок, вкладышей и т.п. Единственное, что не следует забывать – древесина дуба подвержена раскалыванию при забивании в нее гвоздей или завинчивании шурупов без предварительной проходки канала отверстия сверлом меньшего диаметра.

Букпо основным качествам (прочность и твердость) мало в чем уступает дубу, но его древесина имеет высокую гигроскопичность и поэтому больше подвержена гниению. В то же время древесина бука высокотехнологична: хорошо обрабатывается любым инструментом, хорошо гнется под паром. В домостроении применяется не так широко, как дуб (из-за гигроскопичности), но зато очень востребована в отделочных работах.

Для изготовления открытых наслонных стропил и обрешетки в покрытиях постоянных зданий с чердаком, а также для строительства временных зданий (складов, навесов, сараев и др.) и сооружений вспомогательного назначения (эстакад, вышек и др.) следует широко применять древесину мягких лиственных пород – осину, березу, бук, липу, тополь и ольху, но с обязательной усиленной защитой от гниения.

Круглые лесоматериалы.Применяемые в промышленном и гражданском строительстве лесоматериалы делятся на круглые и пиленые. Для каждого из этих видов материалов соответствующими стандартами установлены их классификация, сортность, сортамент, вид обработки, требования к качеству, допускаемые отклонения от нормальных размеров и условия приемки.

Бревно строительное может использоваться в круглом виде или в качестве сырья для получения пиломатериалов. Пиловочные бревна имеют следующие стандартные размеры.

Таблица 1.1.

Длина бревен от 3 до 6,5 м с градацией через 0,5 м. Увеличение толщины бревна по длине называется сбегом. В среднем сбег составляет 0,8 см на 1 м длины. Более массивная часть бревна называетсякомлем, а противоположная –верхнимотрубом. Диаметр бревна замеряется в верхнем отрубе. Бревна длиной более 6,5 м заготовляют по специальному заказу для опор линий электропередач и связи.

Пиленые лесоматериалы.К пиленым лесным материалам относятся:

двукантные брусья, у которых опилены лишь две стороны (рис. 1.2.а);

четырехкантные брусья, у которых опилены все четыре стороны (рис.1.2.б и в);

Бруски, опиленные с четырех сторон, толщиной не более 10 см и шириной не более двойной ширины (рис.1.2.г);

доски толщиной не более 10 см и шириной более двойной толщины: доски делятся на тонкие, толщиной до 3,2 см (рис.1.2.д) и толстые – более 3,2 см (рис.1.2.е).

Рис. 1.2. Пиленые лесоматериалы: а – двукантный брус,

б – обзольный четырехкантный брус, в - чистообрезной

четырехкантный брус, г – брусок, д – тонкая доска,

Сортамент древесины

Лесоматериалы, получаемые строительством, делят на круглые и пилёные .

Круглые лесоматериалы , называемые также бревнами, представляют собой части древесных стволов с гладко опиленными концами – торцами. Они имеют стандартную длину 3 – 6,5 м. с градацией через каждые 0,5 м. Бревна имеют естественную усечено-коническую форму. Уменьшение их толщины по длине называется сбегом. В среднем сбег составляет 0,8 см на 1 м длины (для лиственницы 1 см на 1 м длины) бревна. Средние бревна имеют толщину от 14 до 24 см крупные – до 26 см. Бревна толщиной 13 см (подтоварник) и менее используют для временных построечных сооружений. Круглые лесоматериалы в зависимости от качества подразделяются на 1,2 и 3 сорта.

Пиломатериалы получают в результате продольной распиловки бревен на лесопильных рамах или круглопильных станках. Пиломатериалы подразделяются по характеру обработки: на обрезные (опиленные с 4 сторон по всей длине); обзольные (часть поверхно­сти не опилена по всей длине из-за сбега бревна); необрезные (не опилены две кромки).

Пиломатериалы прямоугольного сечения делятся на доски, бруски и брусья. Более широкие стороны пиломатериалов называют пластями, а узкие – кромками. Пиломатериалы имеют стандартную длину 1– 6,5м с градацией через каждые 0,25м. Ширина пиломатериалов колеблется от 75 до 275 мм, толщина – от 16 до 250 мм. По качеству древесины и обработки доски и бруски разделяют на пять сортов (отборный, 1, 2, 3, 4-й), а брусья на четыре (1, 2, 3, 4-й).

Плотность древесины.

Плотность древесины – это отношение массы древесины к её объёму. Плотность определяется количеством древесного вещества в единице объёма. Выражается плотность в кг/м3 (килограмм на метр кубический) либо г/см3.

В древесине имеются пустоты (полости клеток, межклеточные пространства). Если бы удалось спрессовать древесину, чтобы все пустоты исчезли, то получилось бы сплошное древесное вещество. Плотность древесины вследствие пористого строения меньше, чем плотность древесного вещества, то же правило можно применить к древесным продуктам, например плотность берёзы или ели ниже плотности берёзовой или хвойной фанеры.

Между плотностью и прочностью древесины существует тесная связь. Более тяжёлая древесина, как правило, является более прочной.

Величины древесной плотности колеблются в очень широких пределах. Наибольшую плотность имеет древесина самшита – 960 кг/м3, берёзы железной – 970 кг/м3 и саксаула – 1040 кг/м3; наименьшую плотность имеет древесина пихты сибирской – 375 кг/м3 и ивы белой – 415 кг/м3. С увеличением влажности плотность древесины увеличивается. Например, плотность древесины бука при влажности 12% составляет 670 кг/м3, а при влажности 25% - 710 кг/м3. В пределах годичного слоя плотность древесины различная: плотность поздней древесины в 2-3 раза больше, чем ранней, поэтому чем лучше развита поздняя древесина, тем выше её плотность.

По плотности при влажности 12% древесину можно разделить на три группы:

Породы высокой плотности – 750 кг/м3 и выше – акация белая, берёза железная, граб, самшит, саксаул, фисташка, кизил.

Породы средней плотности – 550 - 740 кг/м3 – лиственница, тис, берёза, бук, вяз, груша, дуб. Ильм, карагач, клён, платан, рябина, яблоня, ясень.

Породы малой плотности – 510 кг/м3 и менее – сосна, ель, пихта, кедр, тополь, ольха, липа, ива, каштан, орех маньчжурский, бархатное дерево.

Древесина хвойных пород обладает малой плотностью, а рассеянно-сосудистых лиственных пород – высокой плотностью, поэтому она чисто обрабатывается, хорошо лакируется и полируется.

Рис. 12.11. Сегментная металлодеревянная ферма с клееным верхним поясом линейного очертания

1 – стальной башмак опорного узла; 2 – то же, нижнего пояса; 3 – металлический вкладыш

Рис. 12.13. Определение расчетного изгибающего момента в верхних поясах сегментных металлодеревянных ферм.

Эпюры изгибающих моментов в ферме с разрезным (а) и неразрезным (б) верхним поясом и схемы работы криволинейного элемента - постоянная нагрузка по всему пролету и временная (снеговая) на половине пролета.

Снеговая нагрузка принимается по схеме 2 прил. 3 СНиП (1) для сводчатых покрытий, при этом наиболее невыгодное сочетание нагрузок получается обычно при учете односторонней снеговой нагрузки, распределенной по закону треугольника.

Геометрические размеры элементов ферм определяют, заменяя криволинейный верхний пояс прямолинейным, т.е. соединяя узлы верхнего пояса прямыми линиями – хордами.

Конструктивный расчет ферм заключается в подборе сечения поясов, раскосов, конструировании и расчете узлов. Верхний пояс ввиду криволинейности и приложения нагрузки между узлами рассчитывается как сжато-изгибаемый элемент.

Расчетный изгибающий момент в панелях верхнего пояса определяется как сумма моментов от поперечной нагрузки и момента от продольной силы, возникающего за счет выгиба панели (рис. 12.13).

При разрезном верхнем поясе момент определяется по формуле

(12.3)

где М 0 – изгибающий момент, определенный по балочной схеме,

D 1 – горизонтальная проекция панели между центрами узлов;

q– расчетная условно равномерно распределенная нагрузка (в пределах панели);

N– расчетная сжимающая сила в панели верхнего пояса;

f 0 – стрела подъема (кривизны) панели;

d- длина панели по хорде;

R– радиус кривизны верхнего пояса,

l– пролет фермы;

f– высота фермы в середине пролета между осями поясов.

При неразрезном верхнем поясе расчетные изгибающие моменты в пролете и на опорах определяются как для неразрезной многопролетной балки с равными пролетами по приближенным формулам:

для опорных (крайних) панелей

(12.4)

(12.5)

для средних панелей

(12.6)

(12.7)

Моменты от продольных сил определены, исходя из предположения, что каждая панель представляет собой однопролетную балку, причем крайние панели считаются шарнирно опертыми с одного конца и с жестко закрепленным другим концом, а средние панели – с обоими жестко закрепленными концами. При определении гибкости расчетную длину крайних панелей принимают равной 0,8 длины хорды, а средних панелей – 0,65d.

Сечение нижнего пояса подбирается по формуле для центрально-растянутых стальных элементов по площади нетто, то есть с учетом ослаблений от отверстий для узловых болтов. При расположении узлового болта с эксцентриситетом относительно оси нижнего пояса, нижний пояс проверяется на внецентренное растяжение с учетом нагрузки от собственного веса.

Сжатые раскосы рассчитываются на продольный изгиб с расчетной длиной, равной длине раскоса между центрами узлов фермы. Растянутые раскосы рассчитываются на растяжение с учетом имеющихся ослаблений. В целях унификации все раскосы принимаются одинакового сечения.

Затем определяется количество глухарей (нагелей), необходимых для крепления пластинок к раскосам, рассматривая наиболее нагруженный элемент. Проверяют стальные пластинки на растяжение по ослабленному сечению и на устойчивость из плоскости, принимая расчетную длину планки равной расстоянию от узлового болта до ближайшей к нему болта раскоса. Для уменьшения расчетной длины планок ставится дополнительный стяжной болт вне раскоса.

Конструируется и рассчитывается опорный узел фермы:

Выполняется проверка торца верхнего пояса на смятие;

Назначаются размеры опорной плиты из условия опирания и закрепления анкерными болтами;

Определяется необходимая длина сварных швов для крепления уголков нижнего пояса к фасонкам опорного узла.

При необходимости рассчитывается стальной вкладыш в узлах разрезного верхнего пояса и узловой болт. Узловой болт, на который надеваются пластинки раскосов, рассчитывается на изгиб от равнодействующей усилий R б, возникающих в примыкающих раскосах при односторонней нагрузке. Момент в узловом болте

где а – плечо приложения силы R б,

а=δ+0,5δ 1 (δ – толщина пластинки – наконечника, δ 1 – толщина крайнего ребра узлового вкладыша).

Строительный подъем ферм назначается равным 1/200 пролета. Выполняется проверка фермы на действие монтажных нагрузок.

См.п18

Рисунок 8 – Геометрическая и расчетная схема арки

В стрельчатых арках определяют угол наклона α и длину l хорды, центральный угол φ и длину S/2 полуарки, координаты центра a и b, угол наклона опорного радиуса φ 0 и уравнение дуги левой полуарки . Затем половину пролета арки делят на четное число, но не менее шести равных частей и в этих сечениях определяют координаты х и у, углы наклона касательных α и их тригонометрические функции.

Статический расчет

Опорные реакции трехшарнирной арки состоят из вертикальных и горизонтальных составляющих. Вертикальные реакции R a и R b определяют как в однопролетной свободно опертой балке из условия равенства нулю моментов в опорных шарнирах. Горизонтальные реакции (распор) H a и H b определяют из условия равенства нулю моментов в коньковом шарнире.

Определение реакций и усилий удобно производить в сечениях только одной левой полуарки в следующем порядке:
- сначала усилия от единичной нагрузки справа и слева, затем от левостороннего, правостороннего снега, ветра слева, ветра справа и массы оборудования.

Изгибающие моменты следует определять во всех сечениях и иллюстрировать эпюрами.

Продольные и поперечные силы можно определять только в сечениях у шарниров, где они достигают максимальных величин и необходимы для расчетов узлов. Необходимо также определять продольную силу в месте действия максимального изгибающего момента при таком же сочетании нагрузок.

Усилия от двустороннего снега и собственной массы определяют путем суммирования усилий от односторонних нагрузок.

В последнее время все большую популярность на рынке строительных материалов приобретают изделия из клееной древесины. Технология производства этой продукции достаточно хорошо изучена и широко освещалась в специальных изданиях. В статье изложена классификация клееной древесины в Германии, поскольку эта продукция имеет наибольшее распространение именно в Европе.

Конструкционная древесина - что это такое?

Конструкционная древесина - наиболее простой тип строительных пиломатериалов, изготавливаемый в основном из ели или сосны. Этот тип продукции является высокотехнологичным и постепенно получает широкое применение в современном строительстве.
Процесс изготовления начинается с тщательной технической сушки досок хвойных пород, разделенных по сердцевине, до необходимого уровня влажности, который, однако, не должен превышать 15%. При этом необходимо следить за тем, чтобы в процессе сушки древесина не деформировалась. Высушенные доски проходят через строгальную линию, а затем сортируются вручную или автоматически по прочности. В это же время маркируются и вырезаются дефекты. В первую очередь сортировка производится для обеспечения необходимого уровня качества (нормы DIN 4074 - сортировка по прочности). В процессе сортировки могут также учитываться и эстетические требования, что бывает необходимо при производстве клееной продукции для внутренней отделки помещений. Затем производится сращивание заготовок на зубчатый шип. Это процесс производства теоретически бесконечной клееной доски.
После высыхания клея, заготовки проходят через строгальную линию и торцуются по длине. Конструкционная древесина широко применяется в современном производстве деревянных конструкций благодаря высокому уровню качества.
Применение:
каркасные конструкции;
– опалубки - надстройки, пристройки;
потолочные перекрытия;
– внутренняя отделка.
Классы сортировки: S10. (Цифра означает допустимое напряжение на изгиб в ньютонах на мм 2).

Размеры продукции (мм): Стандартные сечения

Ширина
Толщина 120 140 160 180 200 240
60 X X X X X X
80 X X X X X
100 X X
120 X X X

Двухслойные и трехслойные клееные балки

Название данного продукта помогает представить их способ производства, а именно: две доски склеиваются друг с другом. При этом необходимо, чтобы одна из досок была приклеена сердцевиной наружу. И это не случайно, так как именно такая технология склеивания позволяет существенно минимизировать трещины в древесине. Кроме того, в области сердцевины, которая является лицевой стороной склеенной двухслойной балки, меньше всего дефектов, что дает неоспоримое преимущество для продукции в эстетическом смысле.
Процесс изготовления трехслойных балок повторяет процесс изготовления двухслойных балок, различие лишь в том, что в этом случае склеиваются не две, а три доски. Процесс изготовления проистекает так же, как и в случае с производством конструкционной древесины, при этом добавляется операция склейки ламелей по пласти и строгание балок.
Допустимые размеры сечений отдельных ламелей:
– макс. ширина: 240 мм;
– макс. толщина: 80 мм;
– макс. площадь сечения доски: 150 кв. cм;
– в зависимости от сечения длина достигает 18 м.
Классы сортировки: S10, S13.
Область применения:
– рамочные конструкции;
– каркасные сооружения;
– стропила;
– опоры.

Размеры продукции для двухслойных и трехслойных балок (мм):

Двухслойные балки Трехслойные балки
Ширина
Высота 80 100 120 140 160 180 200 240
100 X X
120 X X X
140 X X X
160 X X X X X X
180 X X X X X
200 X X X X X X
220 X X X X
240 X X X

Многослойная клееная древесина

Многослойная клееная древесина одним своим названием определяет способ производства. Отдельные заготовки (доски) склеиваются по длине и толщине друг с другом. В Германии основная доля производства многослойной клееной древесины приходится на сосну или ель.
Область применения:
– навесы;
зимние сады;
– стропила;
– балочные конструкции;
– мосты;
– складские, спортивные и производственные сооружения;
– опоры;
– стойки;
– перила;
– беседки и галереи.
Допустимая толщина ламелей для прямых строительных элементов без специальных климатических требований - от 6 до 42 мм.
Прямые строительные элементы с климатическими требованиями - от 6 мм до 33 мм.
Классы прочности: BS11, BS14, BS16, BS18.
Размеры продукции (мм): Стандартные сечения при длине:12-18 (24 м).

Размеры продукции (мм): Стандартные сечения при длине:12-18 (24 м)

Ширина
Высота 60 80 100 120 140 160 180
100 X
120 X X X X
140 X
160 X X X X X X
200 X X X X X X
240 X X X
280 X X X
320 X X X X
360 X X X
400 X X

Преимущества использования многослойной клееной древесины:

– высокий уровень прочности и жесткости, и в то же время - небольшой вес;
– высокая стабильность форм и соответствие нужным размерам;
– образование трещин практически исключается;
– отсутствие искажений и искривлений при конструкции заготовок большого сечения и длины;
– возможность изготовления продукции любой длины и сечения;
высокое качество поверхности;
– не требуется химической консервации древесины (в зависимости от конструкции) благодаря низкому уровню влажности древесины (– особенно хорошо подходит для химически агрессивной среды (например, складские сооружения для хранения удобрений);
– качество продукции гарантируется постоянным контролем производственного процесса.

Нормы допуска к продаже продукции клееной древесины на территории Германии

Производство клееных и несущих деревянных элементов требует не только специальных технических знаний, но и специально оборудованных производственных площадей, специализированных станков и установок, а также мероприятий по контролю за качеством продукции, т.е. экспортироваться и использоваться в строительстве может только исключительно качественно изготовленная продукция.
Предприятия, которые ставят себе задачу производить деревянные клееные элементы на экспорт, должны в соответствии с нормами DIN 1052 - 1(EN 338) "О предприятиях, обрабатывающих древесину", глава 12.1 получить соответствующий допуск. При оформлении допуска производства фирма-производитель получает соответствующее свидетельство допуска, которое подразделяется на следующие 4 группы:
Допуск "A" (многослойная клееная древесина, двух- и трехслойные клееные балки) - подтверждение профпригодности для производства клееных деревянных элементов несущих конструкций всех видов. В основном, производство охватывает изготовление деревянных деталей и многослойной клееной древесины длиной, заданной самим производителем.
Допуск "B" (многослойная клееная древесина, двух- и трехслойные клееные балки) - подтверждение профпригодности для производства клееных деревянных элементов несущих конструкций (например, балки, опоры и стойки с опорной шириной до 12 м). Как правило, данная категория допуска предполагает производство прямых элементов конструкций из многослойной клееной древесины.
Допуск "C" (конструкционная древесина) - подтверждение профпригодности для производства клееных специальных строительных элементов в соответствии с заключением о допуске от Института строительных технологий, Берлин (к примеру, методы строительства треугольными опорными элементами, доски для лесов, деревянные блочные элементы, опалубки, обрезные пиломатериалы с нанесением клея на торец), особенно для соединений на шип.
Допуск "D" - подтверждение профпригодности для производства клееных материалов для стен и крыши, для щитовых конструкций деревянных домов.
В нормах допусков категорий A, B, C (специальные элементы конструкций) в любом случае указывается, что предприятия должны доказать уровень качества сращивания на шип элементов многослойной клееной древесины в соответствии с нормами DIN 68140-1.
Кроме того, в допусках "А" и "В" указывается, что в соответствии с нормами DIN 68140-1 специальные строительные элементы и сращивание на шип производится из досок соответствующего класса.

П. А. Выпов
коммерческий директор "ЭМИТИМАШ"

Разработка урока технологии (мальчики) в 5 классе

Предмет: Технология (мальчики). Раздел «Технология обработки древесины. Элементы машиноведения»

Место проведения: мастерская Сахаптинской СОШ

Тема урока: Древесина как природный конструкционный материал..

Тип урока: комбинированный.

Методы обучения: устный опрос, рассказ, демонстрация наглядных пособий, практическая работа.

Литература: Учебник В.Д. Симоненко.

Оборудование: образцы различных пород древесины.

Цели урока:


  • изучить с учащимися породы древесины, структуру и обрасти ее применения.

  • воспитать интерес к учению.

  • выработать умение опознавания породы древесины на глаз.
Ход урока

  1. Организационно часть.

  2. Теоретическая часть.

  1. Повторение пройденного материала.
Вопросы: - Что включает в себя рабочее место школьной мастерской?

Из каких основных частей состоит столярный верстак?

Для какой цели служат передний и задний винтовые зажимы?

Перечислите правила за столярным верстаком.


  1. Объяснение нового материала:
Строение древесины. (рис 1)

Лесные массивы занимают в нашей стране площадь свыше 700 миллионов гектаров. Несмотря на такие огромные лесные богатства, все должны бережно относиться к лесу, так как он существенно влияет на климат, на растительный и животный мир Кроме того, лес имеет большое народнохозяйственное значение. Главный его продукт - древесина - применяется в строительстве, мебельном, спичечном производстве, химической промышленности и др. Лесные богатства в нашей стране охраняются законом.

Из чего же состоит дерево?

Дерево состоит из ствола, корня, сучьев, листьев и хвои. Деревья имеющие листву называют лиственными , а имеющие хвою – хвойными . К лиственным породам относятся береза, липа, осина, ольха, дуб и др., к хвойным породам – сосна, ель, кедр, пихта, лиственница.

Вершина ствола дерева вместе с сучьями образует крону.

Крона - это одна из трех основных частей дерева, выполняющая при его жизни определенные функции. Листья или хвоя кроны усваивают углерод из воздуха, образуя на солнце органические вещества, идущие на построение растительного организма дерева.

Другая часть дерева - корни. Их можно сравнить с фундаментом и сваями, которые удерживают ствол дерева в вертикальном положении.

Третья часть дерева - ствол. Он удерживает тяжелую крону и служит проводником питательных веществ поступающих от корней и поступающих в листья.

Ствол - самая ценная часть дерева.

Древесина как природный конструкционный материал получается из стволов деревьев при распиливании их на части.

Ствол дерева имеет более толстую (комлевую) часть у основания и более тонкую - вершинную. Поверхность ствола (рис. 2) покрыта корой (7). Кора является ка бы одеждой для дерева, состоит из наружного пробкового слоя и внутреннего - лубяного. Пробковый слой коры является отмершим. Лубяной слой (6) - проводник соков, питающих дерево. Основная внутренняя часть ствола дерева состоит из древесины. В свою очередь, древесина ствола состоит из множества слоев, которые на разрезе видны как годичные кольца (4).

Что можно узнать по числу годичных колец?

Рыхлый и мягкий центр дерева называют сердцевиной (1) . От сердцевины к коре в виде светлых блестящих линий простираются сердцевинные лучи (2). Сердцевинные лучи создают рисунок (текстуру) древесины.

Камбий (5) – тонкий слой живых клеток, расположенный между корой и древесиной. Только с камбия происходит образование новых клеток и ежегодный прирост дерева по толщине. «Камбий» - от латинского «обмен» (питательными веществами).

(рис 1)
Основные разрезы ствола. (рис. 2)

Для изучения строения древесины различают три основных разреза ствола. По ним выявляются рназличные свойства и рисунки древесины. Разрез (1), проходящий перпендикулярно сердцевине ствола, называют торцевым . Он перпендикулярен годичным кольцам и волокнам. Разрез (2), проходящий через сердцевину ствола, называют радиальным . Он параллелен годичным слоям и волокнам. Тангенциальный разрез (3) проходит параллельно сердцевине ствола и удален от нее на некоторое расстояние

(рис. 2)

Давайте рассмотрим строение и область применения.


Породы древесины. (рис. 3)

Их определяют по следующих характерным признакам: текстуре, запаху, твердости, цвету.

Сосна . Хвойная порода. Мягкая. Пропитана смолистыми веществами. Древесина красного цвета с ярко выраженной текстурой. Применяется для изготовления окон и дверей, полов и потолков, мебели. В строительстве судов, вагонов, мостов.

Ель . Хвойная порода. Мягкая. Пропитана смолистыми веществами. Цвет белый с желтым оттенком. Применяется для изготовления музыкальных инструментов, мебели, окон и дверей.

Лиственница. Плотность лиственницы выше сосновой на 30%. Пролежав долго в воде - становится твердой как камень. Из коры изготовляют красно-коричневую краску. Применяется для изготовления домов, колес, посуды, мостов.

Кедр. Ядровая порода. У древесины кедра широкая белая заболонь с желтым оттенком и розовато-охристым ядром. Применяется для половицы, мебели, карандашей.

Береза . Лиственная порода. Твердая. Цвет белый с буроватым оттенком. Применяется для изготовления музыкальных фанеры, мебели, посуды, ружейных лож, лыж.

Осина . Лиственная порода. Мягкая. Цвет белый с зеленоватым оттенком. Склонна к загниванию. Используется для изготовления спичек, посуды, игрушек, бумаги.

Липа . Лиственная порода. Мягкая. Цвет белый с розовым оттенком. Применяется для изготовления посуды, чертежных досок, карандашей, изделий с художественной резьбой.

Дуб . Лиственная порода. Твердая. Цвет светло-желтый с коричнево-серым оттенком и ярко выраженной текстурой. Применяется для изготовления мебели, паркета, облицовывания ценных изделий, мостов и вагонов.

(рис. 3)

Наиболее красивую текстуру имеют такие породы как дуб, ясень и различные виды красного дерева. Эти породы строгают на тонкие листы – шпон, а затем их наклеивают ценные изделия.

3. Практическая работа: определить породы древесины по образцам, выданным учителем.

1. Изучить описание и таблицу пород деревьев.

2. Выписать в тетрадь основные признаки, по которым определяются породы древесины.

3. Определить породы древесины по образцам, выданным учителем.

III . Итог урока: проверка практической работы.

IV . Задание на дом : выучить определения.  2, стр. 12-15.

План-конспект урока составил учитель технологии Сахаптинской СОШ Крюков Иван Евгеньевич

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Древесина как конструкционный материал

Наша страна является первой в мире по количеству лесных площадей, которые занимаю почти половину территории России - примерно 12,3 млн. км 2 . Основная часть лесов России, около3/4, расположена в районах Сибири, Дальнего Востока, в северных областях европейской части страны. Преобладающими породами являются хвойные: 37% лесов занимает лиственница, 19% - сосна, 20% - ель и пихта, 8% - кедр. Лиственные породы занимают около ј площади наших лесов. Наиболее распространенной породой является береза, занимающая около 1/6 общей площади лесов.

Запасы древесины в наших лесах составляют около 80 млрд. м 3 . Ежегодно заготавливается около 280 млн. м3. деловой древесины, т.е. пригодной для изготовления конструкций и изделий. Однако, это количество далеко не исчерпывает естественного годового прироста древесины в отдаленных районах Сибири и Дальнего Востока.

Заготовленный лес в виде отрезков стволов стандартной длины доставляется автомобильным, железнодорожным и водным транспортом или путем сплава по рекам и озерам на деревообрабатывающие предприятия. Там из него изготавливают пилёные материалы, фанеру, древесные плиты, конструкции и строительные детали. При лесозаготовке и обработке древесины образуется большое количество отходов, эффективное использование которых имеет большое народно-хозяйственное значение. Изготовление из отходов древесины изоляционных древесноволокнистых и древесностружечных плит, широко применяемых в строительстве, позволяет экономить большое количество деловой древесины.

Хвойную древесину используют для изготовления основных элементов деревянных конструкций и строительных деталей. Прямые высокие стволы хвойных деревьев с небольшим количеством сучков позволяют получать прямолинейные пиломатериалы с ограниченным количеством пороков. Хвойная древесина содержит смолы, благодаря чему она лучше сопротивляется увлажнению и загниванию, чем лиственная.

Лиственная древесина большинства пород является менее прямолинейной, имеет больше сучков и более подвержена загниванию, чем хвойная. Она почти не применяется для изготовления основных элементов деревянных строительных конструкций.

Дубовая древесина выделяется среди лиственных пород повышенной прочностью и стойкостью к загниванию. Однако, ввиду дефицитности и высокой стоимости она используется только для небольших соединительных деталей.

Березовая древесина так же относится к твердым лиственным породам. Ее используют, главным образом, для изготовления строительной фанеры. Нуждается в защите от загнивания.

Достоинства и недостатки древесины как строительного материала.

Древесина, как и другие строительные материалы, имеет свои достоинства и недостатки.

Достоинства:

Наличие широкой, постоянно возобновляемой сырьевой базы;

Относительно малая плотность;

Высокая удельная прочность - отношение предела прочности при растяжении вдоль волокон к плотности: 100/500 = 0,2 (примерно равная стали);

Стойкость к солевой агрессии, к воздействию других химически агрессивных сред;

Биологическая совместимость с человеком и животными - в зданиях из древесины наилучший микроклимат;

Высокие эстетические и акустические свойства - лучшие концертные залы страны облицованы древесиной;

Малый коэффициент теплопроводности поперек волокон - стена из бруса шириной 200 мм эквивалентна по теплопроводности кирпичной стене шириной 640 мм;

Малый коэффициент линейного расширения вдоль волокон - в деревянных зданиях нет необходимости устраивать температурные швы и подвижные опоры;

Меньшая трудоемкость механической обработки, возможность создания гнутоклееных конструкций.

Недостатки:

Анизотропия строения древесины;

Подверженность загниванию и поражению жуками-древоточцами;

Сгораемость в условиях пожара;

Изменение физико-механических характеристик под воздействием различных факторов (влаги, температуры);

Усушка, разбухание, коробление и растрескивание под влиянием атмосферных воздействий;

Наличие пороков (сучки, косослой и других), существенно снижающих качество изделий и конструкций;

Ограниченность сортамента лесоматериалов.

Строение древесины

В результате растительного происхождения древесина имеет трубчатое слоисто-волокнистое строение. Основную массу древесины составляют древесные волокна, расположенные вдоль ствола. Они состоят из удлиненных пустотелых оболочек отмерших клеток (трахеидов, длиной порядка 3 мм) органических веществ (целлюлозы и легнина).

Древесные волокна располагаются концентрическими слоями вокруг оси ствола, которые называются годичными слоями, т.к. каждый слой нарастает в течение года. Они хорошо заметны в виде ряда колец на поперечных разрезах ствола, особенно хвойных деревьев. По их количеству можно определить возраст дерева.

Каждый годичный слой состоит из двух частей. Внутренний слой (более широкий и светлый) состоит из мягкой ранней древесины, образующейся весной, когда дерево растет быстро. Клетки ранней древесины имеют более тонкие стенки и широкие полости. Клетки поздней древесины имеют более толстые стенки и узкие полости. Прочность и плотность древесины зависит от относительного содержания в ней поздней древесины.

Средняя часть стволов древесины хвойных пород имеет более темный цвет, содержит больше смолы и называется ядро. Затем идет заболонь и, наконец, кора.

Кроме того в древесине имеются горизонтальные сердцевинные лучи, мягкая сердцевина, смоляные ходы, сучки.

Лесоматериалы, получаемые строительством, делят на круглые и пилёные.

Круглые лесоматериалы, называемые также бревнами, представляют собой части древесных стволов с гладко опиленными концами - торцами. Они имеют стандартную длину 3 - 6,5 м. с градацией через каждые 0,5 м. Бревна имеют естественную усечено-коническую форму. Уменьшение их толщины по длине называется сбегом. В среднем сбег составляет 0,8 см на 1 м длины (для лиственницы 1 см на 1 м длины) бревна. Средние бревна имеют толщину от 14 до 24 см крупные - до 26 см. Бревна толщиной 13 см (подтоварник) и менее используют для временных построечных сооружений. Круглые лесоматериалы в зависимости от качества подразделяются на 1,2 и 3 сорта.

Пиломатериалы получают в результате продольной распиловки бревен на лесопильных рамах или круглопильных станках. Пиломатериалы подразделяются по характеру обработки: на обрезные (опиленные с 4 сторон по всей длине); обзольные (часть поверхности не опилена по всей длине из-за сбега бревна); необрезные (не опилены две кромки).

Пиломатериалы прямоугольного сечения делятся на доски, бруски и брусья. Более широкие стороны пиломатериалов называют пластами, а узкие - кромками. Пиломатериалы имеют стандартную длину 1- 6,5м с градацией через каждые 0,25м. Ширина пиломатериалов колеблется от 75 до 275 мм, толщина - от 16 до 250 мм. По качеству древесины и обработки доски и бруски разделяют на пять сортов (отборный, 1, 2, 3, 4-й), а брусья на четыре (1, 2, 3, 4-й).

Плотность. Древесина относится к классу легких конструкционных материалов. Ее плотность зависит от относительного объема пор и содержания в них влаги. Стандартная плотность древесины должна определяться при влажности 12%. Свежерубленая древесина имеет плотность 850 кг/м 3 . Расчетная плотность древесины хвойных пород в составе конструкций в помещениях со стандартной влажностью воздуха 12% принимают равной 500 кг/м 3 ., в помещении с влажностью воздуха более 75% и на открытом воздухе - 600 кг/м 3 .

Температурное расширение. Линейное расширение при нагревании, характеризуемое коэффициентом линейного расширения, в древесине различно вдоль и под углами к волокнам. Коэффициент линейного расширения б вдоль волокон составляет (3 ч 5) · 10-6, что позволяет строить деревянные здания без температурных швов. Поперек волокон древесины этот коэффициент меньше в 7 - 10 раз.

Теплоемкость древесины значительна, коэффициент теплоемкости сухой древесины составляет С = 1,6КДЖ/кг єС.

Еще одним ценным свойством древесины является ее стойкость ко многим химическим и биологическим агрессивным среда. Она является химически более стойким материалом, чем металл и железобетон. При обычной температуре плавиковая, фосфорная и соляная (низкой концентрации) кислоты не разрушают древесину. Большинство органических кислот при обычной температуре не ослабляют древесину, поэтому она часто используется для конструкций в условиях химически агрессивных сред.

Механические свойства древесины характеризуются: прочностью - способностью сопротивляться разрушению от механических воздействий; жесткостью - способностью сопротивляться изменению размеров и формы; твердостью - способностью сопротивляться проникновению другого твердого тела; ударной вязкостью - способностью поглощать работу при ударе.

Древесина является анизотропным материалом, поэтому ее прочность зависит от направления действия усилий по отношению к волокнам. При действии усилий вдоль волокон, оболочки клеток работают в самых благоприятных условиях и древесина показывает наибольшую прочность.

Средний предел прочности древесины сосны без пороков вдоль волокон составляет:

При растяжении - 100 МПа.

При изгибе - 80 МПа.

При сжатии - 44 МПа.

При растяжении, сжатии и скалывании поперек волокон эта величина не превосходит 6,5 МПа. Наличие пороков значительно (~ на30%) снижает прочность древесины при сжатии и изгибе, а особенно (~ на 70%) при растяжении. Основными недопустимыми пороками древесины являются: гниль, червоточины и трещины в зонах скалывания в соединениях.

Наиболее распространенными и неизбежными пороками древесины являются сучки - заросшие остатки бывших ветвей дерева. Сучки являются допустимыми с ограничениями пороками.

Длительность действия нагрузки существенно влияет на прочность древесины. При неограниченно длительном нагружении ее прочность характеризуется пределом длительного сопротивления, который составляет только 0,5 предела прочности при стандартном нагружении. Наибольшую прочность, в 1,5 раза превышающую кратковременную, древесина показывает при кратчайших ударных и взрывных нагрузках. Вибрационные нагрузки, вызывающие переменные по знаку напряжения, снижают ее прочность.

Жесткость древесины (ее степень деформативности под действием нагрузки) существенно зависит от направления действия нагрузок по отношению к волокнам, их длительности и влажности древесины. Жесткость определяется модулем упругости Е.

Для хвойных пород вдоль волокон Е = 15000 МПа.

В СНиП II-25-80 модуль упругости для любой породы древесины Ео = 10000 МПа. Е90 = 400 МПа.

При повышенной влажности, температуре, а также при совместном действии постоянных и временных нагрузок значение Е снижается коэффициентами условия работы mв, mт, mд < 1.

Влияние влажности. Изменение влажности в пределах от 0% до 30% приводит к снижению прочности древесины на 30% от максимальной. Дальнейшее изменение влажности не приводит к снижению прочности древесины.

Поперечное изменение влажности (усушка и разбухание) приводят к короблению древесины. Наибольшая усушка происходит поперек волокон, перпендикулярно годичным слоям. Деформации усушки развиваются неравномерно от поверхности к центру. При усушке появляется не только коробление, но и усушечные трещины.

Для сравнивания показателей прочности и жесткости древесины установлено значение стандартной влажности 12%

В12=ВW,

где б - поправочный коэффициент, при сжатии и изгибе б = 0,04.

Влияние температуры. При повышении температуры предел прочности и модуль упругости снижаются, а хрупкость древесины повышается. Предел прочности древесины Gt при температуре t в пределах от 10 до 30 о С можно определять исходя из ее начальной прочности - G20 при температуре 20 о С с учетом поправочного коэффициента в = 3,5 МПа.

Gt = G20 - в(t-20).

Древесина для несущих элементов деревянных конструкций должна удовлетворять требованиям I, II и III сортов.

Древесина I сорта используется в наиболее ответственных напряженных растянутых элементах. Это отдельные растянутые стержни и доски растянутых зон клееных балок высотой сечения более 50 см

Косослой? 7%.

Суммарный диаметр сучков на длине 20 см d ? 1/4b.

Древесина II сорта используется в сжатых и изгибаемых элементах. Это отдельные сжатые стержни, доски крайних зон клееных балок высотой менее 50 см.; доски крайней сжатой зоны и растянутой зоны, расположенной выше досок 1-го сорта в клееных балках высотой более 50 см., доски крайних зон рабочих клееных сжатых, изгибаемых и сжато-изогнутых стержней.

Косослой?10%.

Суммарный диаметр сучков на длине 20 см d ? 1/3b.

Древесина III сорта используется в менее напряженных средних клееных сжатых, изгибаемых и сжато-изгибаемых элементов, а также в мало ответственных элементах настилов и обрешеток.

Косослой?12%.

Суммарный диаметр сучков на длине 20 см d ? 1/2b.

Строительная фанера - это листовой древесный материал заводского изготовления. Она состоит, как правило, из нечетного количества тонких слоев - шпонов. Волокна соседних шпонов располагаются во взаимно перпендикулярных направлениях.

СНиП II-25-80 по проектированию деревянных конструкций рекомендует следующие виды водостойкой фанеры в качестве строительной:

1. Фанера марки ФСФ, склеенная фенолоформальдегидными клеями. Эта фанера выпускается:

Из древесины березы (5-ти и 7-ми слойная, толщиной 5 - 8 мм и более).

Из древесины личтвенницы (7-слойная, толщиной 8 мм и более).

Листы клееной фанеры толщиной более 15 мм называют фанерными плитами. Прочность клееной фанеры на срез в плоскости перпендикулярной листу примерно в 3 раза превышает прочность древесины при скалывании вдоль волокон, что является ее важным преимуществом.

Модуль упругости березовой фанеры вдоль волокон составляет 90%, а поперек - 60% от модуля упругости древесины вдоль волокон. Модули упругости фанеры из лиственницы составляют соответственно 70% и 50% от Ео древеспины.

Банелизированная фанера (ФБС) отличается от фанеры марки ФСФ тем, что ее наружные слои пропитывают водостойкими спирторастворимыми смолами. Она имеет толщину 7-18 м. Ее прочность вдоль волокон в 2,5 раза, а поперек в 2 раза превышает прочность хвойной древесины вдоль волокон. Применяется в особо неблагоприятных влажностных условиях.

Гниение - это разрушение древесины простейшими растительными организмами - дереворазрушающими грибками. Некоторые грибы поражают еще растущие и высыхающие деревья в лесу. Складские грибы разрушают лесоматериал во время хранения их на складах. Домовые грибы - (мерилиус, пория и др.) разрушают древесину строительных конструкций в процессе эксплуатации. древесина строительный фанера гниение

Грибы развиваются из клеток - спор, которые легко переносятся движением воздуха. Приростая, споры образуют плодовое тело и грибницу гриба - источник новых спор.

Защита от гниения:

1. Стерилизация древесины в процессе высокотемпературной сушки. Прогрев древесины при t > 80 о С, что приводит к гибели спор грибов, грибниц и плодовых тел гриба.

2. Конструктивная защита предполагает режим эксплуатации, когда влажность древесины W<20% (наименьшая влажность при которой могут расти грибы).

2.1. Защита древесины от атмосферной влаги - гидроизоляция покрытий, необходимый уклон кровли.

2.2. Защита от конденсационной влаги - пароизоляция, проветривание конструкций (осушающие продухи).

2.3. Защита от увлажнения капиллярной влагой (от земли) - устройство гидроизоляции. Деревянные конструкции должны опираться на фундамент (с битумной или рубероидной изоляцией) выше уровня грунта или пола минимум на 15 см.

3. Химическая защита от гниения необходима, когда увлажнение древесины неизбежно. Химическая защита заключается в пропитке ядовитыми для грибов веществами - антисептиками.

Водорастворимые антисептики (фтористый, кремнефтористый натрий) - это вещества не имеющие ни цвета ни запаха, безвредные для людей. Используются в закрытых помещениях.

Маслянистые антисептики - это минеральные масла (каменноугольное, антросценовое, сланцевое, древесный креозот и др.). Они не растворяются в воде, но вредны для человека, поэтому используются для конструкций на открытом воздухе, в земле, над водой.

Пропитка выполняется в автоклавах под высоким давлением (до 14 МПа).

Защита от жуков точильщиков - нагрев до t>80 o C или окуривание ядовитыми газами типа гексахлорана.

Характеризуется пределом огнестойкости (порядка 40 мин. для бруса 17 х 17 см, нагруженного до напряжения 10 МПа.).

1. Конструктивная. Ликвидация условий, благоприятных для возгораний.

2. Химическая (противопожарная пропитка или окраска). Пропитывают веществами, которые называются антипиренами (например, аммонийная соль, фосфорная и серная кислота). Пропитку выполняют в автоклавах одновременно с антисептированием. При нагреве антипирены расплавляются, образуя огнезащитную пленку. Защитная окраска выполняется составами на основе жидкого стекла, суперфтора и т.д.

Размещено на Allbest.ru

...

Подобные документы

    Сведения о древесине: достоинства, недостатки, качество, область применения. Физические и механические свойства древесины, методы повышения ее долговечности. Свойства модифицированной древесины; полимеры-модификаторы. Строительные изделия из древесины.

    реферат , добавлен 01.05.2017

    Разновидности и особенности древесных пород. Характеристика строения древесного ствола. Описание наиболее распространенных пороков древесины. Загнивание и возгорание древесины, способы защиты. Область применения полуфабрикатов и конструкций из древесины.

    реферат , добавлен 07.06.2011

    Характеристика здания, его шатровая функция над хоккейным кортом. Особенности расчетов панели, подбор сечений, геометрическая схема фермы. Сущность ответственности при эксплуатации деревянных конструкций, методы предотвращения гниения древесины.

    дипломная работа , добавлен 09.11.2010

    Достоинства и недостатки древесины в качестве строительного материала. Макроскопические признаки древесины основных хвойных пород. Технология строительства бревенчатых домов. Правила техники безопасности при работе на деревообрабатывающих станках.

    аттестационная работа , добавлен 16.06.2009

    Обзор истории использования деревянных конструкций в строительстве. Изучение особенностей и конструкции ребристых, кружально-сетчатых и тонкостенных куполов. Узлы и элементы деревянного купола. Современные средства защиты древесины от гниения, возгорания.

    реферат , добавлен 13.01.2015

    Физические и механические свойства древесины. Испытание механических свойств древесины на изгиб и на сжатие. Направление сил в деревянной конструкции, находящейся под нагрузкой. Расчет изгибаемого элемента прямоугольного сечения. Проверка на устойчивость.

    контрольная работа , добавлен 10.10.2013

    Механические свойства древесины: прочность, деформативность. Работа на растяжение деревянных конструкций. Значение величины дефекта, его расположения на их разрушение в виде разрыва. Растягивающие напряжения вдоль волокон. Центральное растяжение элемента.

    презентация , добавлен 18.06.2015

    Значение древесины в обыденной жизни и технике. Механические, физические, химические свойства древесины. Прочность, твёрдость и износостойкость. Абсолютная и относительная влажность древесины. Разбухание древесины, усушка, гигроскопичность, коробление.

    презентация , добавлен 03.05.2015

    Главная особенность дерева. Виды древесных пород, разновидности пихты. Строение древесного ствола. Пороки древесины: сучки, пятнистость. Загнивание и возгорание древесины, способы защиты. Особенность деревянных построек. Деревянная архитектура Томска.

    контрольная работа , добавлен 19.01.2012

    Сущность железобетона, его особенности как строительного материала. Физико-механические свойства материалов железобетонных конструкций и арматуры. Достоинства и недостатки железобетона. Технология изготовления сборных конструкций, области их применения.