Допускаемые напряжения условие прочности. Предельные и допустимые напряжения Предельное напряжение формула

Для определения допускаемых напряжений в машиностроении применяют следующие основные методы.
1. Дифференцированный запас прочности находят как произведение ряда частных коэффициентов, учитывающих надежность материала, степень ответственности детали, точность расчетных формул и действующие силы и другие факторы, определяющие условия работы деталей.
2. Табличный - допускаемые напряжения принимают по нормам, систематизированным в виде таблиц
(табл. 1 - 7). Этот метод менее точен, но наиболее прост и удобен для практического пользования при проектировочных и проверочных прочностных расчетах.

В работе конструкторских бюро и при расчетах деталей машин применяются как дифференцированный, так и. табличный методы, а также их комбинация. В табл. 4 - 6 приведены допускаемые напряжения для нетиповых литых деталей, на которые не разработаны специальные методы расчета и соответствующие им допускаемые напряжения. Типовые детали (например, зубчатые и червячные колеса, шкивы) следует рассчитывать по методикам, приводимым в соответствующем разделе справочника или специальной литературе.

Приведенные допускаемые напряжения предназначены для приближенных расчетов только на основные нагрузки. Для более точных расчетов с учетом дополнительных нагрузок (например, динамических) табличные значения следует увеличивать на 20 - 30 %.

Допускаемые напряжения даны без учета концентрации напряжений и размеров детали, вычислены для стальных гладких полированных образцов диаметром 6-12 мм и для необработанных круглых чугунных отливок диаметром 30 мм. При определении наибольших напряжений в рассчитываемой детали нужно номинальные напряжения σ ном и τ ном умножать на коэффициент концентрации k σ или k τ :

1. Допускаемые напряжения*
для углеродистых сталей обыкновенного качества в горячекатаном состоянии

Марка
стали
Допускаемые напряжения **, МПа
при растяжении [σ p ] при изгибе [σ из ] при кручении [τ кр ] при срезе [τ ср ] при смятии [σ см ]
I II III I II III I II III I II III I II
Ст2
Ст3
Ст4
Ст5
Ст6
115
125
140
165
195
80
90
95
115
140
60
70
75
90
110
140
150
170
200
230
100
110
120
140
170
80
85
95
110
135
85
95
105
125
145
65
65
75
80
105
50
50
60
70
80
70
75
85
100
115
50
50
65
65
85
40
40
50
55
65
175
190
210
250
290
120
135
145
175
210

* Горский А.И.. Иванов-Емин Е. Б.. Кареновский А. И. Определение допускаемых напряжений при расчетах на прочность. НИИмаш, М., 1974.
** Римскими цифрами обозначен вид нагрузки: I - статическая; II - переменная, действующая от нуля до максимума, от максимума до нуля (пульсирующая); III - знакопеременная (симметричная).

2. Механические свойства и допускаемые напряжения
углеродистых качественных конструкционных сталей

3. Механические свойства и допускаемые напряжения
легированных конструкционных сталей

4. Механические свойства и допускаемые напряжения
для отливок из углеродистых и легированных сталей

5. Механические свойства и допускаемые напряжения
для отливок из серого чугуна

6. Механические свойства и допускаемые напряжения
для отливок из ковкого чугуна

7. Допускаемые напряжения для пластмассовых деталей

Для пластичных (незакаленных) сталей при статических напряжениях (I вид нагрузки) коэффициент концентрации не учитывают. Для однородных сталей (σ в > 1300 МПа, а также в случае работы их при низких температурах) коэффициент концентрации, при наличии концентрации напряжения, вводят в расчет и при нагрузках I вида (k > 1). Для пластичных сталей при действии переменных нагрузок и при наличии концентрации напряжений эти напряжения необходимо учитывать.

Для чугунов в большинстве случаев коэффициент концентрации напряжений приближенно принимают равным единице при всех видах нагрузок (I - III). При расчетах на прочность для учета размеров детали приведенные табличные допускаемые напряжения для литых деталей следует умножать на коэффициент масштабного фактора, равный 1,4 ... 5.

Приближенные эмпирические зависимости пределов выносливости для случаев нагружения с симметричным циклом:

для углеродистых сталей:
- при изгибе, σ -1 = (0,40÷0,46)σ в ;
σ -1р = (0,65÷0,75)σ -1 ;
- при кручении, τ -1 = (0,55÷0,65)σ -1 ;

для легированных сталей:
- при изгибе, σ -1 = (0,45÷0,55)σ в ;
- при растяжении или сжатии, σ -1р = (0,70÷0,90)σ -1 ;
- при кручении, τ -1 = (0,50÷0,65)σ -1 ;

для стального литья:
- при изгибе, σ -1 = (0,35÷0,45)σ в ;
- при растяжении или сжатии, σ -1р = (0,65÷0,75)σ -1 ;
- при кручении, τ -1 = (0,55÷0,65)σ -1 .

Механические свойства и допускаемые напряжения антифрикционного чугуна:
- предел прочности при изгибе 250 ÷ 300 МПа,
- допускаемые напряжения при изгибе: 95 МПа для I; 70 МПа - II: 45 МПа - III, где I. II, III - обозначения видов нагрузки, см. табл. 1.

Ориентировочные допускаемые напряжения для цветных металлов на растяжение и сжатие. МПа:
- 30...110 - для меди;
- 60...130 - латуни;
- 50...110 - бронзы;
- 25...70 - алюминия;
- 70...140 - дюралюминия.

Предельным напряжением считают напряжение, при котором в материале возникает опасное состояние (разрушение или опасная деформация).

Для пластичных материалов предельным напряжением счита­ют предел текучести, т.к. возникающие пластические деформации не исчезают после снятия нагрузки:

Для хрупких материалов, где пластические деформации отсут­ствуют, а разрушение возникает по хрупкому типу (шейки не обра­зуется), за предельное напряжение принимают предел прочности:

Для пластично-хрупких материалов предельным напряжением считают напряжение, соответствующее максимальной деформации 0,2% (сто,2):

Допускаемое напряжение - максимальное напряжение, при ко­тором материал должен нормально работать.

Допускаемые напряжения получают по предельным с учетом запаса прочности:

где [σ] - допускаемое напряжение; s - коэффициент запаса прочно­сти; [s] - допускаемый коэффициент запаса прочности.

Примечание. В квадратных скобках принято обозначать допускаемое значение величины.

Допускаемый коэффициент запаса прочности зависит от каче­ства материала, условий работы детали, назначения детали, точно­сти обработки и расчета и т. д.

Он может колебаться от 1,25 для простых деталей до 12,5 для сложных деталей, работающих при переменных нагрузках в услови­ях ударов и вибраций.

Особенности поведения материалов при испытаниях на сжатие:

1. Пластичные материалы практически одинаково работают при растяжении и сжатии. Механические характеристики при растяже­нии и сжатии одинаковы.

2. Хрупкие материалы обычно обладают большей прочностью при сжатии, чем при растяжении: σ вр < σ вс.

Если допускаемое напряжение при растяжении и сжатии раз­лично, их обозначают [σ р ] (растяжение), [σ с ] (сжатие).



Расчеты на прочность при растяжении и сжатии

Расчеты на прочность ведутся по условиям прочности - нера­венствам, выполнение которых гарантирует прочность детали при данных условиях.

Для обеспечения прочности расчетное напряжение не должно превышать допускаемого напряжения:

Расчетное напряжение а зависит от нагрузки и размеров попе­речного сечения, допускаемое только от материала детали и усло­вий работы.

Существуют три вида расчета на прочность.

1. Проектировочный расчет - задана расчетная схема и на­грузки; материал или размеры детали подбираются:

Определение размеров поперечного сечения:

Подбор материала

по величине σ пред можно подобрать марку материала.

2. Проверочный расчет - известны нагрузки, материал, раз­меры детали; необходимо проверить, обеспечена ли прочность.

Проверяется неравенство

3. Определение нагрузочной способности (максимальной нагрузки):

Примеры решения задач

Прямой брус растянут силой 150 кН (рис. 22.6), материал - сталь σ т = 570 МПа, σ в = 720 МПа, запас прочности [s] = 1,5. Определить размеры поперечного сечения бруса.

Решение

1. Условие прочности:

2. Потребная площадь поперечного сече­ния определяется соотношением

3. Допускаемое напряжение для материала рассчитывается из заданных механических характеристик. Наличие предела текучести означает, что материал - пластичный.

4. Определяем величину потребной площади поперечного сече­ния бруса и подбираем размеры для двух случаев.

Сечение - круг, определяем диаметр.

Полученную величину округляем в большую сторону d = 25 мм, А = 4,91 см 2 .

Сечение - равнополочный уголок № 5 по ГОСТ 8509-86.

Ближайшая площадь поперечного сечения уголка - А = 4,29 см 2 (d = 5 мм). 4,91 > 4,29 (Приложение 1).

Контрольные вопросы и задания

1. Какое явление называют текучестью?

2. Что такое «шейка», в какой точке диаграммы растяжения она образуется?

3. Почему полученные при испытаниях механические характе­ристики носят условный характер?

4. Перечислите характеристики прочности.

5. Перечислите характеристики пластичности.

6. В чем разница между диаграммой растяжения, вычерченной автоматически, и приведенной диаграммой растяжения?

7. Какая из механических характеристик выбирается в качестве предельного напряжения для пластичных и хрупких материалов?

8. В чем различие между предельным и допускаемым напряже­ниями?

9. Запишите условие прочности при растяжении и сжатии. Отли­чаются ли условия прочности при расчете на растяжение и расчете на сжатие?


Ответьте на вопросы тестового задания.

Для оценки прочности элементов конструкций вводятся понятия о рабочих (расчетных) напряжениях, предельных напряжениях, допускаемых напряжениях и запасах прочности. Их рассчитывают по зависимостям, представленным в п. 4.2, 4.3.

Рабочие (расчетные) напряжения и характеризуют напряженное состояние элементов конструкций при действии эксплуатационной нагрузки.

Предельные напряжения lim и lim характеризуют механические свойства материала и являются опасными для элемента конструкции с точки зрения его прочности.

Допускаемые напряжения [ ] и [ ] являются безопасными и обеспечивают прочность элемента конструкции в данных условиях эксплуатации.

Запас прочности n устанавливает соотношение предельных и допускаемых напряжений, учитывая отрицательное влияние на прочность различных неучтенных факторов.

Для безопасной работы деталей механизмов необходимо, чтобы максимальные напряжения, возникающие в нагруженных сечениях, не превышали допускаемого для данного материала значения:

;
,

где
и
– наибольшие напряжения (нормальные и касательные ) в опасном сечении;
и– допускаемые значения этих напряжений.

При сложном сопротивлении определяют эквивалентные напряжения
в опасном сечении. Условие прочности имеет вид

.

Допускаемые напряжения определяют в зависимости от предельных напряжений lim и lim , полученных при испытаниях материалов: при статических нагрузках – предел прочности
иτ В для хрупких материалов, предел текучести
иτ Т для пластичных материалов; при циклических нагрузках – предел выносливости иτ r :

;
.

Коэффициент запаса прочности назначают исходя из опыта проектирования и эксплуатации аналогичных конструкций.

Для деталей машин и механизмов, работающих в условиях циклических нагрузок и имеющих ограниченный ресурс эксплуатации, расчет допускаемых напряжений осуществляют по зависимостям:

;
,

где
– коэффициент долговечности, учитывающий заданный срок службы.

Рассчитывают коэффициент долговечности по зависимости

,

где
– базовое число циклов испытаний для данного материала и вида деформации;
– число циклов нагружения детали, соответствующее заданному ресурсу эксплуатации;m – показатель степени кривой выносливости.

При проектировании элементов конструкций используют два способа расчетов на прочность:

    проектировочный расчет по допускаемым напряжениям для определения основных размеров конструкции;

    проверочный расчет для оценки работоспособности существующей конструкции.

5.5. Примеры расчета

5.5.1. Расчет ступенчатых стержней на статическую прочность

Р

ассмотрим напряженное состояние стержней ступенчатой конструкции при простых видах деформаций. На рис. 5.3 представлены три схемы (сх. 1, 2, 3) нагружения силамиFкруглых стержней переменного сечения, консольно закрепленных в жесткой опоре, и три эпюры напряжений (эп. 1, 2, 3), действующих в поперечных сечениях нагруженных стержней. СилаF= 800 Н приложена на расстоянииh= 10 мм от оси стержня. Меньший диаметр стержнейd= 5 мм, большийD= 10 мм. Материал стержней – Ст. 3 с допускаемыми напряжениями
= 160 МПа и= 100 МПа.

Для каждой из представленных схем определяем:

1. Вид деформации:

сх. 1 – растяжение; сх. 2 – кручение; сх. 3 – чистый изгиб.

2. Внутренний силовой фактор:

сх. 1 – нормальная сила

N = 2F = 2800 = 1600 H;

сх. 2 – крутящий момент М Х = T = 2Fh = 280010 = 16000 Н мм;

сх. 3 – изгибающий момент M = 2Fh = 280010 = 16000 Н мм.

3. Вид напряжений и их величину в сечениях А и Б:

сх. 1 – нормальные
:

МПа;

МПа;

сх. 2 – касательные
:

МПа;

МПа;

сх. 3 – нормальные
:

МПа;

МПа.

4. Какая из эпюр напряжений соответствует каждой схеме нагружения :

сх. 1 – эп. 3; сх. 2 – эп. 2; сх. 3 – эп. 1.

5. Выполнение условия прочности :

сх. 1 – условие выполняется:
МПа
МПа;

сх. 2 – условие не выполняется:
МПа
МПа;

сх. 3 – условие не выполняется:
МПа
МПа.

6. Минимально допустимый диаметр, обеспечивающий выполнение условия прочности :

сх. 2:
мм;

сх. 3:
мм.

7. Максимально допустимую силу F из условия прочности :

сх. 2:
Н;

сх. 3:
Н.

Таблица 2.4

Рис.2.22

Рис.2.18

Рис.2.17

Рис. 2.15

Для испытаний на растяжение применяют разрывные машины, позволяющие в процессе испытания записать диаграмму в координатах “нагрузка – абсолютное удлинение”. Характер диаграммы растяжения зависит от свойств испытуемого материала и от скорости деформирования. Типичный вид такой диаграммы для малоуглеродистой стали при статическом приложении нагрузки изображен на рис. 2.16.

Рассмотрим характерные участки и точки этой диаграммы, а также соответствующие им стадии деформирования образца:

ОА – справедлив закон Гука;

АВ – появились остаточные (пластические) деформации;

ВС – пластические деформации растут;

СД – площадка текучести (рост деформации происходит при постоянной нагрузке);

ДК – участок упрочнения (материал вновь приобретает способность увеличивать сопротивление дальнейшей деформации и воспринимает возрастающее до некоторого предела усилие);

Точка K – испытание остановили и произвели разгрузку образца;

KN – линия разгрузки;

NKL – линия повторного нагружения образца (KL – участок упрочнения);

LM – участок падения нагрузки, в этот момент на образце появляется так называемая шейка - местное сужение;

Точка M – разрыв образца;

После разрыва образец имеет вид, примерно показанный на рис.2.17. Обломки можно сложить и измерить длину после испытания ℓ 1 , а также диаметр шейки d 1 .

В результате обработки диаграммы растяжения и измерений образца получаем ряд механических характеристик, которые можно разделить на две группы – характеристики прочности и характеристики пластичности.

Характеристики прочности

Предел пропорциональности:

Наибольшее напряжение, до которого справедлив закон Гука.

Предел текучести:

Наименьшее напряжение, при котором деформация образца происходит при постоянном растягивающем усилии.

Предел прочности (временное сопротивление):

Наибольшее напряжение, отмеченное в процессе испытания.

Напряжение в момент разрыва:

Определяемое таким образом напряжение при разрыве весьма условно и не может быть использовано в качестве характеристики механических свойств стали. Условность состоит в том, что получено оно делением силы в момент разрыва на первоначальную площадь поперечного сечения образца, а не на действительную его площадь при разрыве, которая значительно меньше начальной вследствие образования шейки.

Характеристики пластичности

Напомним, что пластичность – это способность материала деформиро­ваться без разрушения. Характеристики пластичности – деформационные, по­этому определяются по данным измерения образца после разрушения:


∆ℓ ос = ℓ 1 - ℓ 0 – остаточное удлинение,

– площадь шейки.

Относительное удлинение после разрыва:

. (2.25)

Эта характеристика зависит не только от материала, но и от соотношения размеров образца. Именно поэтому стандартные образцы имеют фиксированное отношение ℓ 0 = 5d 0 или ℓ 0 = 10d 0 и величина δ всегда приводится с индексом – δ 5 или δ 10 , причём δ 5 > δ 10 .

Относительное сужение после разрыва:

. (2.26)

Удельная работа деформации:

где А – работа, затраченная на разрушение образца; находится как площадь, ограниченная диаграммой растяжения и осью абсцисс (площадь фигуры OABCDKLMR). Удельная работа деформации характеризует способность материала сопротивляться ударному действию нагрузки.

Из всех полученных при испытании механических характеристик основными характеристиками прочности являются предел текучести σ т и предел прочности σ пч, а основными характеристиками пластичности – относительное удлинение δ и относительное сужение ψ после разрыва.

Разгрузка и повторное нагружение

При описании диаграммы растяжения было указано, что в точке К испыта­ние остановили и произвели разгрузку образца. Процесс разгрузки описы­вался прямой KN (рис.2.16), параллельной прямолинейному участку OA диаграммы. Это означает, что удлинение образца ∆ℓ′ П, полученное до на­чала разгрузки, полностью не исчезает. Исчезнувшая часть удлинения на диаграмме изображается отрезком NQ, оставшаяся – отрезком ОN. Следовательно, полное удлинение образца за пределом упругости состоит из двух частей – упругой и остаточной (пластической):

∆ℓ′ П = ∆ℓ′ уп + ∆ℓ′ ос.

Так будет вплоть до разрыва образца. После разрыва упругая составляющая полного удлинения (отрезок ∆ℓ уп) исчезает. Остаточное удлинение изображается отрезком ∆ℓ ос. Если же прекратить нагружение и разгрузить образец в пределах участка OB, то процесс разгрузки изобразится линией, совпадающей с линией нагрузки – деформация чисто упругая.

При повторном нагружении образца длиною ℓ 0 + ∆ℓ′ ос линия нагружения практически совпадает с линией разгрузки NK. Предел пропорциональности повысился и стал равным тому напряжению, от которого производилась разгрузка. Далее прямая NK перешла в кривую KL без площадки текучести. Часть диаграммы, расположенная левее линии NK, оказалась отрезанной, т.е. начало координат переместилось в точку N. Таким образом, в результате вытяжки за предел текучести, образец изменил свои механические свойства:

1). повысился предел пропорциональности;

2). исчезла площадка текучести;

3). уменьшилось относительное удлинение после разрыва.

Такое изменение свойств называется наклёпом .

При наклёпе повышаются упругие свойства и понижается пластичность. В некоторых случаях (например, при механической обработке) явление наклёпа нежелательно и его устраняют термообработкой. В других случаях его создают искусственно для улучшения упругости деталей или конструкций (обработка дробью рессор или вытяжка тросов грузоподъёмных машин).

Диаграммы напряжений

Чтобы получить диаграмму, характеризующую механические свойства материала, первичную диаграмму растяжения в координатах Р – ∆ℓ перестраивают в координатах σ – ε. Так как ординаты σ = Р/F и абсциссы σ = ∆ℓ/ℓ получают делением на постоянные, диаграмма имеет такой же вид, как и первоначальная (рис. 2.18,а).

Из диаграммы σ – ε видно, что

т.е. модуль нормальной упругости равен тангенсу угла наклона прямолинейного участка диаграммы к оси абсцисс.

По диаграмме напряжений удобно определять так называемый условный предел текучести. Дело в том, что большинство конструкционных материалов не имеет площадки текучести – прямая линия плавно переходит в кривую. В этом случае за величину предела текучести (условного) принимается напряжение, при котором относительное остаточное удлинение равно 0,2%. На рис. 2.18,б показано, как определяется величина условного предела текучести σ 0,2 . Предел текучести σ т, определяемый при наличии площадки текучести, часто называют физическим .

Нисходящий участок диаграммы носит условный характер, поскольку действительная площадь поперечного сечения образца после образования шейки значительно меньше первоначальной площади, по которой определяются координаты диаграммы. Можно получить истинное напряжение, если величину силы в каждый момент времени P t делить на действительную площадь поперечного сечения в этот же момент времени F t:

На рис. 2.18,а, этим напряжениям соответствует штриховая линия. До предела прочности S и σ практически совпадают. В момент разрыва истинное напряжение значительно превышает и предел прочности σ пч и тем более напряжение в момент разрыва σ р. Выразим площадь шейки F 1 через ψ и найдем S р.

Þ Þ .

Для пластичной стали ψ = 50 – 65%. Если принять ψ = 50% = 0,5, то получим S р = 2σ р, т.е. истинное напряжение наибольшее в момент разрыва, что вполне логично.

2.6.2. Испытание на сжатие различных материалов

Испытание на сжатие дает меньше информации о свойствах материала, чем испытание на растяжение. Тем не менее, оно совершенно необходимо для характеристики механических свойств материала. Осуществляется на образцах в виде цилиндров, высота которых не более 1,5 диаметра, или на образцах в виде кубиков.

Рассмотрим диаграммы сжатия стали и чугуна. Для наглядности изобразим их на одном рисунке с диаграммами растяжения этих материалов (рис.2.19). В первой четверти – диаграммы растяжения, а в третьей – сжатия.

В начале загружения диаграмма сжатия стали – наклонная прямая с таким же наклоном, как и при растяжении. Потом диаграмма переходит в участок текучести (площадка текучести выражена не так отчетливо, как при растяжении). Далее кривая слегка изгибается и не обрывается, т.к. стальной образец не разрушается, а только сплющивается. Модуль упругости стали Е при сжатии и растяжении одинаков. Также одинаковы и предел текучести σ т + = σ т - . Предел прочности при сжатии получить невозможно, как и невозможно получить характеристики пластичности.

Диаграммы растяжения и сжатия чугуна по форме похожи: искривляются с самого начала и по достижении максимальной нагрузки обрываются. Однако на сжатие чугун работает лучше, чем на растяжение (σ пч - = 5 σ пч +). Предел прочности σ пч – это единственная механическая характеристика чугуна, получаемая при испытании на сжатие.

Трение, возникающее во время испытания между плитами машины и торцами образца, оказывает существенное влияние на результаты испытания и на характер разрушения. Цилиндрический стальной образец принимает бочкообразную форму (рис. 2.20,а), в чугунном кубике возникают трещины под углом 45 0 к направлению нагрузки. Если исключить влияние трения, смазав торцы образца парафином, трещины возникнут по направлению нагрузки и наибольшая сила будет меньше (рис.2.20,б и в). Большинство хрупких материалов (бетон, камень) разрушается при сжатии так же, как чугун, и имеет аналогичную диаграмму сжатия.

Представляет интерес испытание древесины – анизотропного, т.е. обладающего различной прочностью в зависимости от направления силы по отношению к направлению волокон, материала. Анизотропными являются и все более широко применяемые стеклопластики. При сжатии вдоль волокон древесина значительно прочнее, чем при сжатии поперек волокон (кривые 1 и 2 на рис.2.21). Кривая 1 похожа на кривые сжатия хрупких материалов. Разрушение происходит вследствие сдвига одной части кубика относительно другой (рис.2.20,г). При сжатии поперек волокон древесина не разрушается, а прессуется (рис. 2.20,д).

При испытании на растяжение стального образца мы обнаружили изменение механических свойств в результате вытяжки до появления заметных остаточных деформаций – наклёп. Посмотрим, как ведет себя образец после наклёпа при испытании на сжатие. На рис.2.19 диаграмма показана пунктиром. Сжатие идет по кривой NC 2 L 2 , которая располагается выше диаграммы сжатия образца, не подвергавшегося наклёпу OC 1 L 1 , и почти параллельно последней. После наклёпа растяжением пределы пропорциональности и текучести при сжатии уменьшаются. Это явление называется эффектом Баушингера по имени учёного, впервые его описавшего.

2.6.3. Определение твёрдости

Очень распространённым механико-технологическим испытанием является определение твёрдости. Это обусловлено быстротой и простотой таких испытаний и ценностью получаемой информации: твёрдостью характеризует состояние поверхности детали до и после технологической обработки (закалки, азотирования и т.п.), по ней можно косвенно судить о величине предела прочности.

Твёрдостью материала называется способность оказывать сопротивление механическому проникновению в него другого, более твёрдого тела. Величины, характеризующие твёрдость, называют числами твёрдости. Определяемые разными методами, они различны по величине и по размерности и всегда сопровождаются указанием способа их определения.

Наиболее распространённый метод – по Бринелю. Испытание заключается в том, что в образец вдавливают стальной закалённый шарик диаметра D (рис.2.22,а). Шарик выдерживается некоторое время под нагрузкой P, в результате чего на поверхности остается отпечаток (лунка) диаметром d. Отношение нагрузки в кН к площади поверхности отпечатка в см 2 называется числом твёрдости по Бринелю

. (2.30)

Для определения числа твёрдости по Бринелю используют специальные испытательные приборы, диаметр отпечатка измеряется портативным микроскопом. Обычно HB не считают по формуле (2.30) , а находят из таблиц.

Пользуясь числом твёрдости HB, можно без разрушения образца получить приближённое значение предела прочности некоторых металлов, т.к. существует линейная связь между σ пч и HB: σ пч = k ∙ HB (для малоуглеродистой стали k = 0,36, для высокопрочной стали k = 0,33, для чугуна k = 0,15, для алюминиевых сплавов k = 0,38, для титановых сплавов k = 0,3).

Весьма удобен и широко распространён метод определения твердости по Роквеллу . В этом способе в качестве индентора, вдавливаемого в образец, используется алмазный конус с углом при вершине 120 градусов и радиусом закругления 0,2 мм, или стальной шарик диаметром 1,5875 мм (1/16 дюйма). Испытание происходит по схеме, приведённой на рис. 2.22,б. Сначала конус вдавливается предварительной нагрузкой P 0 = 100 H, которая не снимается до конца испытания. При этой нагрузке конус погружается на глубину h 0 . Затем на конус подается полная нагрузка P = P 0 + P 1 (два варианта: A – P 1 = 500 H и C – P 1 = 1400 H), при этом глубина вдавливания увеличивается. После снятия основной нагрузки P 1 остается глубина h 1 . Глубина отпечатка, полученная за счёт основной нагрузки P 1 , равная h = h 1 – h 0 , характеризует твердость по Роквеллу. Число твёрдости определяется по формуле

, (2.31)

где 0,002 – цена деления шкалы индикатора твердомера.

Существуют и другие методы определения твёрдости (по Виккерсу, по Шору, микротвёрдость), которые здесь не рассматриваются.

Основной задачей расчета конструкции является обеспечение ее прочности в условиях эксплуатации.

Прочность конструкции, выполненной из хрупкого металла, считается обеспеченной, если во всех поперечных сечениях всех ее элементов фактические напряжения меньше предела прочности материала. Величины нагрузок, напряжения в конструкции и предел прочности материала нельзя установить совершенно точно (в связи с приближенностью методики расчета, способов определения предела прочности и т. д.).

Поэтому необходимо, чтобы наибольшие напряжения, полученные в результате расчета конструкции (расчетные напряжения), не превышали некоторой величины, меньшей предела прочности, называемой допускаемым напряжением. Значение допускаемого напряжения устанавливается путем деления предела прочности на величину, большую единицы, называемую коэффициентом запаса.

В соответствии с изложенным условие прочности конструкции, выполненной из хрупкого материала, выражается в виде

где - наибольшие расчетные растягивающие и сжимающие напряжения в конструкции; и [-допускаемые напряжения при растяжении и сжатии соответственно.

Допускаемые напряжения зависят от пределов прочности материала на растяжение и сжатие ствс и определяются выражениями

где - нормативный (требуемый) коэффициент запаса прочности по отношению к пределу прочности.

В формулы (39.2) и (40.2) подставляются абсолютные значения напряжений

Для конструкций из пластичных материалов (у которых пределы прочности на растяжение и сжатие одинаковы) используется следующее условие прочности:

где а - наибольшее по абсолютной величине сжимающее или растягивающее расчетное напряжение в конструкции.

Допускаемое напряжение для пластичных материалов определяется по формуле

где - нормативный (требуемый) коэффициент запаса прочности по отношению к пределу текучести.

Использование при определении допускаемых напряжений для пластичных материалов предела текучести (а не предела прочности, как для хрупких материалов) связано с тем, что после достижения предела текучести деформации могут весьма резко увеличиваться даже при незначительном увеличении нагрузки и конструкции могут перестать удовлетворять условиям их эксплуатации.

Расчет прочности, выполняемый с использованием условий прочности (39.2) или (41.2), называется расчетом по допускаемым напряжениям. Нагрузка, при которой наибольшие напряжения в конструкции равны допускаемым напряжениям, называется допускаемой.

Деформации ряда конструкций из пластичных материалов после достижения предела текучести не возрастают резко даже при существенном увеличении нагрузки, если она не превышает величины так называемой предельной нагрузки. Такими, например, являются статически неопределимые конструкции (см. § 9.2), а также конструкции с элементами, испытывающими деформации изгиба или кручения.

Расчет этих конструкций производят или по допускаемым напряжениям, т. е. с использованием условия прочности (41.2), или по так называемому предельному состоянию. В последнем случае допускаемую нагрузку называют предельно допускаемой нагрузкой, а ее величину определяют путем деления предельной нагрузки на нормативный коэффициент запаса несущей способности. Два простейших примера расчета конструкции по предельному состоянию приведены ниже в § 9.2 и примере расчета 12.2.

Следует стремиться к тому, чтобы допускаемые напряжения были полностью использованы, т. е. удовлетворялось условие если это по ряду причин (например, в связи с необходимостью стандартизации размеров элементов конструкции) не удается, то расчетные напряжения должны как можно меньше отличаться от допускаемых. Возможно незначительное превышение расчетных допускаемых напряжений и, следовательно, некоторое снижение фактического коэффициента запаса прочности (по сравнению с нормативным).

Расчет центрально растянутого или сжатого элемента конструкции на прочность должен обеспечить выполнение условия прочности для всех поперечных сечений элемента. При этом большое значение имеет правильное определение так называемых опасных сечений элемента, в которых возникают наибольшие растягивающие и наибольшие сжимающие напряжения. В тех случаях, когда допускаемые напряжения на растяжение или сжатие одинаковы, достаточно найти одно опасное сечение, в котором имеются наибольшие по абсолютной величине нормальные напряжения.

При постоянной по длине бруса величине продольной силы опасным является поперечное сечение, площадь которого имеет наименьшее значение. При брусе постоянного сечения опасным является то поперечное сечение, в котором возникает наибольшая продольная сила.

При расчет конструкций на прочность встречаются три вида задач, различающихся формой использования условий прочности:

а) проверка напряжений (проверочный расчет);

б) подбор сечений (проектный расчет);

в) определение грузоподъемности (определение допускаемой нагрузки). Рассмотрим эти виды задач на примере растянутого стержня из пластичного материала.

При проверке напряжений площади поперечных сечений F и продольные силы N известны и расчет заключается в вычислении расчетных (фактических) напряжений а в характерных сечениях элементов.

Полученное при этом наибольшее напряжение сравнивают затем с допускаемым:

При подборе сечений определяют требуемые площади поперечных сечений элемента (по известным продольным силам N и допускаемому напряжению ). Принимаемые площади сечений F должны удовлетворять условию прочности, выраженному в следующем виде:

При определении грузоподъемности по известным значениям F и допускаемому напряжению вычисляют допускаемые величины продольных сил: По полученным значениям затем определяются допускаемые величины внешних нагрузок [Р].

Для этого случая условие прочности имеет вид

Величины нормативных коэффициентов запаса прочности устанавливаются нормами. Они зависят от класса конструкции (капитальная, временная и т. п.), намечаемого срока ее эксплуатации, нагрузки (статическая, циклическая и т. п.), возможной неоднородности изготовления материалов (например, бетона), от вида деформации (растяжение, сжатие, изгиб и т. д.) и других факторов. В ряде случаев приходится снижать коэффициент запаса в целях уменьшения веса конструкции, а иногда увеличивать коэффициент запаса - при необходимости учитывать износ трущихся частей машин, коррозию и загнивание материала.

Величины нормативных коэффициентов запаса для различных материалов, сооружений и нагрузок имеют в большинстве случаев значения: - от 2,5 до 5 и - от 1,5 до 2,5.

Коэффициенты запаса прочности, а следовательно, и допускаемые напряжения для строительных конструкций регламентированы соответствующими нормами их проектирования. В машиностроении обычно выбирают требуемый коэффициент запаса прочности, ориентируясь на опыт проектирования и эксплуатации машин аналогичных конструкций. Кроме того, ряд передовых машиностроительных заводов имеет внутризаводские нормы допускаемых напряжений, часто используемые и другими родственными предприятиями.

Ориентировочные величины допускаемых напряжений при растяжении и сжатии для ряда материалов приведены в приложении II.