Нервный импульс - электрический импульс или нет? Нервный импульс Как создается нервный импульс в мозге

Синаптическая передача — взаимодействие клеток мозга.

Нейроны производят электрохимические возмущения, перемещающиеся по их волокнам. Эти возмущения, именуемые нервными импульсами или потенциалами действия, генерируются малыми электрическими токами вдоль мембраны нервной клетки. Нейроны способны производить до тысячи потенциалов действия в секунду, в последовательности и длительности которых закодирована информация.

Нервные импульсы - электрохимические возмущения, передаваемые вдоль нервных волокон; через них нейроны взаимодействуют друг с другом и с остальным телом. Электрическая природа нервных импульсов задается структурой клеточной мембраны, которая состоит из двух слоев, разделенных небольшим зазором. Мембрана действует и как конденсатор - накапливает электрический заряд, собирая на себе ионы, и как сопротивление, блокируя ток. У нейрона в покое вдоль внутренней поверхности мембраны образуется облако отрицательно заряженных ионов, а вдоль внешней - положительных.

Нейрон, активируясь, испускает (также говорят «генерирует») нервный импульс. Он возникает в ответ на сигналы, полученные от других клеток, и являет собой краткое обратное изменение разности потенциалов мембраны: внутри она становится на мгновение положительно заряженной, после чего быстро возвращается к состоянию покоя. Во время нервного импульса мембрана нервной клетки пропускает внутрь ионы определенных видов. Поскольку ионы электрически заряжены, их движение есть электрический ток сквозь мембрану.

Нейроны в покое. Внутри нейронов находятся ионы, но и сами нейроны окружены ионами в других концентрациях. Частицам свойственно двигаться из области с высокой концентрацией в область с низкой, однако мембрана нервной клетки препятствует этому движению, поскольку в основном непроницаема.

Получается, что одни ионы концентрируются снаружи мембраны, а другие - внутри. В результате внешняя поверхность мембраны заряжена положительно, а внутренняя - отрицательно. Мембрана, таким образом, оказывается поляризована.

Все началось с кальмара. Механизм потенциала действия - волны возбуждения на мембране клетки - выяснили в начале 1950-х, в классическом эксперименте с микроэлектродами, введенными в аксоны гигантского кальмара. Эти эксперименты доказали, что потенциал действия генерируется последовательными перемещениями ионов сквозь мембрану.

В первой фазе потенциала действия мембрана ненадолго становится проницаемой для ионов натрия, и они заполняют клетку. Это вызывает деполяризацию клетки - разность потенциалов на мембране меняется на обратную, и внутренняя поверхность мембраны заряжается положительно. Вслед за этим клетку стремительно покидают ионы калия и разность потенциалов мембраны возвращается к исходному состоянию. Проникновение ионов калия внутрь делает заряд на мембране более отрицательным, нежели в состоянии покоя, и клетка, таким образом, оказывается гиперполяризована. В так называемый рефрактерный период нейрон не может произвести следующий потенциал действия, однако быстро возвращается к состоянию покоя.

Потенциалы действия генерируются в структуре, называемой аксонным холмиком, - это место, где аксон растет из клеточного тела. Потенциалы действия перемещаются вдоль аксона, потому что деполяризация одного сегмента волокна вызывает деполяризацию и соседнего. Эта волна деполяризации катится в направлении от клеточного тела и, достигнув терминали нервной клетки, вызывает выброс нейромедиаторов.

Одиночный импульс длится одну тысячную секунды; нейроны кодируют информацию точно выверенной по времени последовательностью импульсов (спайковых разрядов), однако до сих пор неясно, как именно кодируется информация. Нейроны часто производят потенциалы действия в ответ на сигналы от других клеток, однако порождают и импульсы без всяких внешних сигналов. Частота базальных пульсаций, или спонтанных потенциалов действия, варьирует у разных типов нейронов и может меняться в зависимости от сигналов других клеток.

Пройдут немногие. Ионы проникают через мембрану нервной клетки по белкам, имеющим форму бочки и именуемым ионными каналами. Они пронизывают мембрану и образуют сквозные поры. В ионных каналах есть сенсоры, распознающие изменения в разности потенциалов мембраны, они открываются и закрываются в ответ на эти изменения.

Нейроны человека содержат более десятка разных видов таких каналов, и каждый из них пропускает лишь один вид ионов. Активность всех этих ионных каналов во время потенциала действия строго регламентирована. Они открываются и закрываются в определенном порядке - так, что нейроны в ответ на сигналы, получаемые от других клеток, могут генерировать последовательности нервных импульсов.

Закон Ома.
Закон Ома объясняет, как электрические свойства мозга меняются в зависимости от входящих сигналов. Он описывает соотношение между разностью потенциалов (напряжением) мембраны нервной клетки, ее сопротивлением и током, протекающим сквозь нее. Согласно этому соотношению ток прямо пропорционален напряжению на мембране и описывается уравнением I = U/R, где I - электрический ток, U - разность потенциалов, а R - сопротивление.

Быстрее Усэйна Болта.
Аксоны спинного и головного мозга изолированы толстой миелиновой тканью, производимой клетками мозга олигодендроцитами. У олигодендроцита ответвлений немного, и каждое состоит из крупного плоского полотна миелина, многократно обернутого вокруг маленького сегмента аксона, принадлежащего другому нейрону. Миелиновая оболочка вдоль длины всего аксона неравномерна: она прерывается с регулярными интервалами, и точки этих прерываний именуются перехватами Ранвье. Ионные каналы сгущаются как раз в этих точках, тем самым обеспечивая перескакивание потенциалов действия с одного перехвата на другой. Так ускоряется весь процесс движения потенциалов действия вдоль аксона - оно происходит со скоростью до 100 м/сек.

В результате эволюции нервной системы человека и других животных возникли сложные информационные сети, процессы в которых основаны на химических реакциях. Важнейшим элементом нервной системы являются специализированные клетки нейроны . Нейроны состоят из компактного тела клетки, содержащего ядро и другие органеллы. От этого тела отходит несколько разветвленных отростков. Большинство таких отростков, называемых дендритами , служат точками контакта для приема сигналов от других нейронов. Один отросток, как правило самый длинный, называется аксоном и передает сигналы на другие нейроны. Конец аксона может многократно ветвиться, и каждая из этих более мелких ветвей способна соединиться со следующим нейроном.

Во внешнем слое аксона находится сложная структура, образованная множеством молекул, выступающих в роли каналов, по которым могут поступать ионы — как внутрь, так и наружу клетки. Один конец этих молекул, отклоняясь, присоединяется к атому-мишени. После этого энергия других частей клетки используется на то, чтобы вытолкнуть этот атом за пределы клетки, тогда как процесс, действующий в обратном направлении, вводит внутрь клетки другую молекулу. Наибольшее значение имеет молекулярный насос, который выводит из клетки ионы натрия и вводит в нее ионы калия (натрий-калиевый насос).

Когда клетка находится в покое и не проводит нервных импульсов, натрий-калиевый насос перемещает ионы калия внутрь клетки и выводит ионы натрия наружу (представьте себе клетку, содержащую пресную воду и окруженную соленой водой). Из-за такого дисбаланса разность потенциалов на мембране аксона достигает 70 милливольт (приблизительно 5% от напряжения обычной батарейки АА).

Однако при изменении состояния клетки и стимуляции аксона электрическим импульсом равновесие на мембране нарушается, и натрий-калиевый насос на короткое время начинает работать в обратном направлении. Положительно заряженные ионы натрия проникают внутрь аксона, а ионы калия откачиваются наружу. На мгновение внутренняя среда аксона приобретает положительный заряд. При этом каналы натрий-калиевого насоса деформируются, блокируя дальнейший приток натрия, а ионы калия продолжают выходить наружу, и исходная разность потенциалов восстанавливается. Тем временем ионы натрия распространяются внутри аксона, изменяя мембрану в нижней части аксона. При этом состояние расположенных ниже насосов меняется, способствуя дальнейшему распространению импульса. Резкое изменение напряжения, вызванное стремительными перемещения ионов натрия и калия, называют потенциалом действия . При прохождении потенциала действия через определенную точку аксона, насосы включаются и восстанавливают состояние покоя.

Потенциал действия распространяется довольно медленно — не более доли дюйма за секунду. Для того чтобы увеличить скорость передачи импульса (поскольку, в конце концов, не годится, чтобы сигнал, посланный мозгом, достигал руки лишь через минуту), аксоны окружены оболочкой из миелина, препятствующей притоку и оттоку калия и натрия. Миелиновая оболочка не непрерывна — через определенные интервалы в ней есть разрывы, и нервный импульс перескакивает из одного «окна» в другое, за счет этого скорость передачи импульса возрастает.

Когда импульс достигает конца основной части тела аксона, его необходимо передать либо следующему нижележащему нейрону, либо, если речь идет о нейронах головного мозга, по многочисленным ответвлениям многим другим нейронам. Для такой передачи используется абсолютно иной процесс, нежели для передачи импульса вдоль аксона. Каждый нейрон отделен от своего соседа небольшой щелью, называемой синапсом . Потенциал действия не может перескочить через эту щель, поэтому нужно найти какой-то другой способ для передачи импульса следующему нейрону. В конце каждого отростка имеются крошечные мешочки, называющие (пресинаптическими ) пузырьками , в каждом из которых находятся особые соединения — нейромедиаторы . При поступлении потенциала действия из этих пузырьков высвобождаются молекулы нейромедиаторов, пересекающие синапс и присоединяющиеся к специфичным молекулярным рецепторам на мембране нижележащих нейронов. При присоединении нейромедиатора равновесие на мембране нейрона нарушается. Сейчас мы рассмотрим, возникает ли при таком нарушении равновесия новый потенциал действия (нейрофизиологи продолжают искать ответ на этот важный вопрос до сих пор).

После того как нейромедиаторы передадут нервный импульс от одного нейрона на следующий, они могут просто диффундировать, или подвергнуться химическому расщеплению, или вернуться обратно в свои пузырьки (этот процесс нескладно называется обратным захватом ). В конце XX века было сделано поразительное научное открытие — оказывается, лекарства, влияющие на выброс и обратный захват нейромедиаторов, могут коренным образом изменять психическое состояние человека. Прозак (Prozac*) и сходные с ним антидепрессанты блокируют обратный захват нейромедиатора серотонина. Складывается впечатление, что болезнь Паркинсона взаимосвязана с дефицитом нейромедиатора допамина в головном мозге. Исследователи, изучающие пограничные состояния в психиатрии, пытаются понять, как эти соединения влияют на человеческий рассудок.

По-прежнему нет ответа на фундаментальный вопрос о том, что же заставляет нейрон инициировать потенциал действия — выражаясь профессиональным языком нейрофизиологов, неясен механизм «запуска» нейрона. В этом отношении особенно интересны нейроны головного мозга, которые могут принимать нейромедиаторы, посланные тысячей соседей. Об обработке и интеграции этих импульсов почти ничего не известно, хотя над этой проблемой работают многие исследовательские группы. Нам известно лишь, что в нейроне осуществляется процесс интеграции поступающих импульсов и выносится решение, следует или нет инициировать потенциал действия и передавать импульс дальше. Этот фундаментальный процесс управляет функционированием всего головного мозга. Неудивительно, что эта величайшая загадка природы остается, по крайней мере сегодня, загадкой и для науки!

Информация передается между нейронами подобно току в проводах. Электрические импульсы передаются от клетки к клетке, от дендрита, в котором они возникают, к аксону, через который они проходят. Но есть и отличие от электрических сетей ‒ импульсы передаются не посредством электронов, а при помощи ионов.

Синапс

Несмотря на свою многочисленность, нейроны никогда не соприкасаются между собой. Но электрические импульсы не могут передаваться, если нет физического контакта. Поэтому передаваемые от нейрона к нейрону сообщения должны превращаться из электрической в другую форму. В нервной системе для передачи информации между нейронами используются химические вещества.

Синапс – место контакта между двумя нейронами или между нейроном и получающей сигнал клеткой.

Синаптическое пространство имеет форму щели. Когда электрический импульс приходит к нейрону, он высвобождает из синапса химические молекулы, так называемые нейромедиаторами. Посредством диффузии они перемещаются через синаптическую щель и попадают на специально предназначенные для них рецепторы другого нейрона. В результате возникает еще один электрический импульс.

Два типа нейромедиаторов

Мозг вырабатывает около полусотни видов нейромедиаторов, которые можно разделить на два типа. Возбуждающие медиаторы способствуют возникновению нервного импульса. Тормозящие нейромедиаторы, напротив, замедляют его возникновение. В большинстве случаев нейрон выделяет только один тип нейромедиаторов.

Предел возбуждения

Каждый из нейронов способен принимать сотни сообщений в секунду. Он судит о степени ее значи­мости и делает ее предварительный анализ. В нейроне складываются возбуждающие и вычита­ются тормозящие импульсы. Чтобы нейрон сгенерировал собствен­ный импульс, полученная сумма должна быть больше опре­деленного значения.

Роль повторений

Схожие идеи, схожие воспоминания приводят в действие одни и те же нейроны и синапсы. Часто используемые синапсы работают быстрее. Поэтому мы быстрее вспоминаем то, что мы видели или повторяли несколько раз. Однако эти связи могут исчезнуть, если их недостаточно использовали, а на их месте возникнуть новые.

Глиальные клетки

Другой тип нервных клеток ‒ глиальные клетки. Их в 10 раз больше, чем самих нейронов. Их называют «кормилицами нейронов», потому что они способствуют их питанию, удалению продуктов их жизнедеятельности и защите от внешних врагов. Но новейшие исследования говорят о том, что они нужны не только для ухода за нейронами. Судя по всему, они тоже участвуют в обработке информации, кроме того, необходимы для работы памяти!

Нервные волокна

Отростки нейронов окружены оболочками и объединены в пучки, которые называются нервными волокнами. Число нервных волокон в различных нервах колеблется от 10 2 до 10 5 .

Оболочка нервного волокна состоит из глиальных клеток и способствует прохождению нервных импульсов по телу. Она называется миелиновой оболочкой.

Роль гормонов в работе мозга

Для обмена информацией мозг использует особые химические соединения ‒ гормоны. Некоторые из них производит сам мозг, а некоторые ‒ эндокринные железы. Гормоны вызывают различные физиологические реакции.

3. ГОЛОВНОЙ МОЗГ ЧЕЛОВЕКА

Наружный слой мозга состоит из двух больших полушарий, которые скрывают под собой более глубинные образования. Поверхность полушарий покрыта бороздами и извилинами, которые увеличивают их поверхность.

Основные части головного мозга

Головной мозг человека можно условно разделить на три основные части:

    передний мозг

    ствол мозга

    мозжечок

Серое и белое вещество

Вещество мозга состоит из серых и белых участков. Серые области ‒ скопления нейронов. Их более 100 млрд., и именно они занимаются переработкой информации. Белое вещество мозга ‒ это аксоны. Через них передается информация, которую обрабатывают нейроны. Во внутренней части спинного мозга также сосредоточено серое вещество.

Питание мозга

Для нормальной работы мозг нуждается в питании. В отличие от других клеток организма мозговые клетки умеют перерабатывать только глюкозу. Мозгу нужен также кислород. Без него митохондрии не смогут произвести достаточное количество энергии. Но поскольку глюкозу и кислород в мозг поставляет кровь, то для сохранения здоровья мозга ничто не должно мешать нормальному кровотоку. Если кровь перестает поступать в мозг, уже через десять секунд человек теряет сознание. Хотя вес мозга составляет всего 2,5% веса тела, к нему постоянно, днем и ночью, поступает 20% циркулирующей в организме крови и соответствующее количество кислорода.

Нейроны сообщаются между собой при помощи «нервных сообщений». Эти «сообщения» похожи на электрический ток, который бежит по проводам. Иногда, при передаче от одного нейрона к другому, эти импульсы превращаются в химические сообщения.

Нервные импульсы

Информация передается между нейронами подобно электрическому току в проводах. Эти сообщения закодированы: они представляют собой последовательность совершенно одинаковых импульсов. Сам код кроется в их частоте, то есть в числе импульсов в секунду. Импульсы передаются от клетки к клетке, от дендрита, в котором они возникают, к аксону, через который они проходят. Но есть и отличие от электрических сетей - импульсы передаются не при помощи электронов*, а при помощи более сложных частиц - ионов.

Медикаменты, влияющие на скорость импульсов

Существует множество химических препаратов, способных изменить характеристики передачи нервных импульсов. Как правило, они действуют на синаптическом уровне. Анестетики и транквилизаторы замедляют, а иногда и вообще подавляют передачу импульсов. А антидепрессанты и стимуляторы, такие как кофеин, наоборот способствуют лучшей их передаче.

С огромной скоростью

Нервные импульсы должны быстро проходить по телу. Ускорить их прохождение нейронам помогают окружающие их глиальные клетки. Они образуют оболочку нервного волокна, называемую миелиновой. В результате импульсы идут с умопомрачительной скоростью - более 400 км/час.

Химические связи

Передаваемые от нейрона к нейрону сообщения должны превращаться из электрической в химическую форму. Это связано с тем, что, несмотря на свою многочисленность, нейроны никогда не соприкасаются между собой. Но электрические импульсы не могут передаваться, если нет физического контакта. Поэтому нейроны используют для связи между собой специальную систему, называемую синапсами. В этих местах нейроны разделены узким пространством синаптической щелью. Когда электрический импульс приходит к первому нейрону, он высвобождает из синапса химические молекулы, так называемые нейромедиаторы. Эти вещества, вырабатываемые нейронами, перемещаются через синаптическую щель и попадают на специально предназначенные для них рецепторы другого нейрона. В результате возникает еще один электрический импульс.

Импульс между нейронами проходит меньше, чем за тысячную секунды.

Различие нейро-медиаторов

Мозгом вырабатывается около полусотни нейромедиаторов, которые можно подразделить на две группы. Первая состоит из тех, что инициируют возникновение нервного импульса, - их называют возбуждающими. Другие, напротив, замедляют его возникновение - это тормозящие нейромедиаторы. Стоит отметить, что в большинстве случаев нейрон выделяет только один тип нейромедиаторов. И в зависимости оттого, является ли он возбуждающим или тормозящим, нейрон по-разному воздействует на соседние нервные клетки.

Искусственная стимуляция

Отдельный нейрон или группу нейронов возможно стимулировать искусственно при помощи введенных в них электродов, направляющих электрические импульсы в точно обозначенные зоны мозга. Этот метод иногда используют в медицине, в частности для лечения больных страдающих болезнью Паркинсона Эта проявляющаяся в пожилом возрасте болезнь сопровождается дрожанием конечностей. Это дрожание может быть остановлено путем постоянной стимуляции конкретной зоны мозга.

Нейрон — микрокомпьютер

Каждый из нейронов способен принимать сотни сообщений в секунду. И, чтобы не оказаться перегруженным информацией, он должен уметь судить о степени ее значимости и делать ее предварительный анализ. Эта вычислительная деятельность происходит внутри клетки. Там складываются возбуждающие и вычитаются тормозящие импульсы. И, для того чтобы нейрон сгенерировал собственный импульс, необходимо, чтобы сумма предыдущих оказалась больше определенного значения. Если сложение возбуждающих и тормозящих импульсов не превысит этот предел, нейрон будет «молчать».

Информационные дороги

Во всем этом хитросплетении нейронов существуют прекрасно обозначенные пути. Схожие идеи, схожие воспоминания проходят, приводя всегда в действие одни и те же нейроны и синапсы. До сих пор неизвестно, как возникают и поддерживаются эти, подобные контурам электронных схем связи, но очевидно, что они существуют и что, чем они прочнее,тем они эффективнее. Часто используемые синапсы работают быстрее. Этим и объясняется то, почему мы быстрее вспоминаем вещи, которые мы видели или повторяли несколько раз. Однако эти связи возникают не навсегда. Некоторые из них могут исчезнуть, если их недостаточно использовали, а на их месте возникнуть новые. При необходимости нейроны всегда способны создавать новые связи.

Маленькие зеленые точки на фото - гормоны внутри кровеносных сосудов

Химический допинг

Когда говорят, что спортсмен использовал гормональный допинг, это значит, что он принимал гормоны либо в виде таблеток, либо вводя их непосредственно в кровь. Гормоны бывают естественными или искусственными. Самые распространенные - гормоны роста и стероиды, за счет которых мышцы становятся больше и сильнее, а также эритропоэтин - гормон, ускоряющий доставку питательных веществ к мышцам.

Мозг способен производить миллионы операций за доли секунды.

На мозг работают гормоны

Для обмена информацией мозгом используется и другой инструмент - гормоны . Эти химические соединения частично производятся самим мозгом в группе нейронов, расположенных в гипоталамусе. Эти гормоны контролируют производство иных, вырабатываемых в других частях тела в эндокринных железах. Они действуют иначе, чем нейромедиаторы, которые фиксируются непосредственно на нейронах и переносятся с кровью к отдаленным от мозга органам тела, таким как груди, яичники, мужские семенники, почки. Закрепляясь на их рецепторах, гормоны вызывают различные физиологические реакции. Они, например, способствуют росту костей и мышц, управляют чувством голода и жажды и, конечно, влияют на сексуальную активность.

Нервный импульс - это движущаяся волна изменений в состоянии мембраны. Она включает в себя структурные изменения (открытие и закрытие мембранных ионных каналов), химические (изменяющиеся трансмембранные потоки ионов) и электрические (изменения электрического потенциала мембраны: деполяризацию, позитивную поляризацию и реполяризацию). © 2012-2019 Сазонов В.Ф..

Можно сказать короче:

"Нервный импульс - это волна изменений, движущаяся по мембране нейрона". © 2012-2019 Сазонов В.Ф..

Но в физиологической литературе в качестве синонима для нервного импульса принято использовать также и термин "потенциал действия". Хотя потенциал действия - это только электрический компонент нервного импульса.

Потенциал действия – это резкое скачкообразное изменение мембранного потенциала с отрицательного на положительный и обратно.

Потенциал действия - это электрическая характеристика (электрическая составляющая) нервного импульса.

Нервный импульс - это сложный структурно-электро-химический процесс, распространяющийся по мембране нейрона в виде бегущей волны изменений.

Потенциал действия - это только электрический компонент нервного импульса, характеризующий изменения электрического заряда (потенциала) на локальном участке мембраны во время прохождения через него нервного импульса (от -70 до +30 мВ и обратно). (Кликните на изображение слева, чтобы увидеть анимацию.)

Сравните два приведённых выше рисунка (покликайте по ним) и, как говорится, почувствуйте разницу!

Где рождаются нервные импульсы?

Как ни странно, не все студенты, изучившие физиологию возбуждения, могут ответить на этот вопрос. ((

Хотя ответ не сложен. Нервные импульсы рождаются на нейронах всего в нескольких местах:

1) аксонный холмик (это переход тела нейрона в аксон),

2) рецепторное окончание дендрита,

3) первый перехват Ранвье на дендрите (триггерная зона дендрита),

4) постсинаптическая мембрана возбуждающего синапса.

Места возникновения нервных импульсов:

1. Аксонный холмик - главный породитель нервных импульсов.

Аксонный холмик - это самое начало аксона, там где он начинается на теле нейрона. Именно аксонный холмик является главным породителем (генератором) нервных импульсов на нейроне. Во всех остальных местах вероятность рождения нервного импульса намного меньше. Дело в том, что у мембраны аксонного холмика повышена чувствительность к возбуждению и понижен критический уровень деполяризации (КУД) по сравнению с остальными участками мембраны. Поэтому, когда на мембране нейрона начинают суммироваться многочисленные возбуждающие постсинаптические потенциалы (ВПСП), которые возникают в самых разных местах на постсинаптических мембранах всех его синаптических контактов, то раньше всего КУД достигается именно на аксонном холмике. Там-то эта сверхпороговая для холмика деполяризация и открывает потенциал-чувствительные натриевые каналы, в которые входит поток ионов натрия, порождающий потенциал действия и нервный импульс.

Итак, аксонный холмик является интегративной зоной на мембране, он интегрирует все возникающие на нейроне локальные потенциалы (возбуждающие и тормозные) - и первый срабатывает на достижение КУД, порождая нервный импульс.

Важно также учесть следующий факт. От аксонного холмика нервный импульс разбегается по всей мембране своего нейрона: как по аксону к пресинаптическоим окончаниям, так и по дендритам к постсинаптическим "начинаниям". Все локальные потенциалы при этом снимаются с мембраны нейрона и со всех его синапсов, т.к. они "перебиваются" потенциалом действия от пробегающего по всей мембране нервного импульса.

2. Рецепторное окончание чувствительного (афферентного) нейрона.

Если нейрон имеет рецепторное окончание, то на него может воздействовать адекватный раздражитель и порождать на этом окончании сначала генераторный потенциал, а затем и нервный импульс. Когда генераторный потенциал достигает КУД, то на этом окончании открываются потенциал-зависимые натриевые ионные каналы и рождается потенциал действия и нервный импульс. Нервный импульс бежит по дендриту к телу нейрона, а затем по его аксону к пресинаптическим окончаниям для передачи возбуждения на следующий нейрон. Так работают, к примеру, болевые рецепторы (ноцицепторы), являющиеся дендритными окончаниями болевых нейронов. Нервные импульсы в болевых нейронах вознимают именно на рецепторных окончаниях дендритов.

3. Первый перехват Ранвье на дендрите (триггерная зона дендрита).

Локальные возбуждающие постсинаптические потенциалы (ВПСП) на окончаниях дендрита, которые формируются в ответ на возбуждения, приходящие к дендриту через синапсы, суммируются на первом перехвате Ранвье этого дендрита, если он, конечно, миелинизирован. Там находится участок мембраны с повышенной чувствительностью к возбуждению (пониженным порогом), поэтому именно в этом участке легче всего преодолевается критический уровень деполяризации (КУД), после чего открываются потенциал-управляемые ионные каналы для натрия - и возникает потенциал действия (нервный импульс).

4. Постсинаптическая мембрана возбуждающего синапса.

В редких случаях ВПСП на возбуждающем синапсе может быть настолько силён, что прямо там же достигает КУД и порождает нервный импульс. Но чаще это бывает возможно только в результате суммации нескольких ВПСП: или с нескольких соседних синапсов, сработавших одновременно (пространственная суммация), или за счёт того, что на данный синапс пришло несколько импульсов подряд (временная суммация).

Видео: Проведение нервного импульса по нервному волокну

Потенциал действия как нервный импульс

Ниже размещён материал, взятый из учебно-методического пособия автора данного сайта, на который вполне можно ссылаться в своём списке литературы:

Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.

Все процессы мембранных изменений, происходящих в ходе распространяющегося возбуждения, достаточно хорошо изучены и описаны в научной и учебной литературе. Но не всегда это описание легко понять, поскольку в данном процессе задействовано слишком много компонентов (с точки зрения обычного студента, а не вундеркинда, конечно).

Для облегчения понимания мы предлагаем рассматривать единый электрохимический процесс распространяющегося динамичного возбуждения с трех сторон, на трех уровнях:

    Электрические явления – развитие потенциала действия.

    Химические явления – движение ионных потоков.

    Структурные явления – поведение ионных каналов.

Три стороны процесса распространяющегося возбуждения

1. Потенциал действия (ПД)

Потенциал действия – это скачкообразное изменение постоянного мембранного потенциала с отрицательной поляризации на положительную и обратно.

Обычно мембранный потенциал в нейронах ЦНС изменяется от –70 мВ до +30 мВ, а затем вновь возвращается к исходному состоянию, т.е. к –70 мВ. Как видим, понятие потенциала действия характеризуется через электрические явления на мембране.

На электрическом уровне изменения начинаются как смена поляризованного состояния мембраны на деполяризацию. Сначала деполяризация идет в виде локального возбуждающего потенциала. Вплоть до критического уровня деполяризации (примерно –50 мВ) это относительно простое линейное уменьшение электроотрицательности, пропорциональное силе воздействующего раздражителя. А вот потом начинается более крутая самоусиливающаяся деполяризация, она развивается не с постоянной скоростью, а с ускорением . Говоря образно, деполяризация так разгоняется, что перескакивает через нулевую отметку, не заметив этого, и даже переходит в положительную поляризацию. После достижения пика (обычно +30 мВ) начинается обратный процесс – реполяризация , т.е. восстановление отрицательной поляризации мембраны.

Кратко опишем электрические явления во время течения потенциала действия:

Восходящая ветвь графика:

    потенциал покоя – исходное обычное поляризованное электроотрицательное состояние мембраны (–70 мВ);

    нарастающий локальный потенциал – пропорциональная раздражителю деполяризация;

    критический уровень деполяризации (–50 мВ) – резкое ускорение деполяризации (за счет самораскрытия натриевых каналов), с этой точки начинается спайк – высокоамплитудная часть потенциала действия;

    самоусиливающаяся круто нарастающая деполяризация;

    переход нулевой отметки (0 мВ) – смена полярности мембраны;

    «овершут» – положительная поляризация (инверсия, или реверсия, заряда мембраны);

    пик (+30 мВ) – вершина процесса изменения полярности мембраны, вершина потенциала действия.

Нисходящая ветвь графика:

    реполяризация – восстановление прежней электроотрицательности мембраны;

    переход нулевой отметки (0 мВ) – обратная смена полярности мембраны на прежнюю, отрицательную;

    переход критического уровня деполяризации (–50 мВ) – прекращение фазы относительной рефрактерности (невозбудимости) и возврат возбудимости;

    следовые процессы (следовая деполяризация или следовая гиперполяризация);

    восстановление потенциала покоя – норма (–70 мВ).

Итак, сначала – деполяризация, затем – реполяризация. Сначала – утрата электроотрицательности, затем – восстановление электроотрицательности.

2. Ионные потоки

Образно можно сказать, что заряженные ионы – это и есть создатели электрических потенциалов в нервных клетках. Для многих людей звучит странно утверждение, что вода не проводит электрический ток. Но на самом деле это так. Сама по себе вода является диэлектриком, а не проводником. В воде электрический ток обеспечивают не электроны, как в металлических проводах, а заряженные ионы: положительные катионы и отрицательные анионы. В живых клетках основную «электрическую работу» выполняют катионы, так как они более подвижны. Электрические токи в клетках – это потоки ионов.

Итак, важно осознать, что все электрические токи, которые идут через мембрану, являются ионными потоками . Привычного нам из физики тока в виде потока электронов в клетках, как в водных системах, просто нет. Ссылки на потоки электронов будут ошибкой.

На химическом уровне мы, описывая распространяющееся возбуждение, должны рассмотреть, как изменяются характеристики ионных потоков, идущих через мембрану. Главное в этом процессе то, что при деполяризации резко усиливается поток ионов натрия внутрь клетки, а затем он внезапно прекращается на спайке потенциала действия. Входящий поток натрия как раз и вызывает деполяризацию, так как ионы натрия приносят с собой положительные заряды в клетку (чем и снижают электроотрицательность). Затем, после спайка, значительно нарастает выходящий наружу поток ионов калия, что вызывает реполяризацию. Ведь калий, как мы неоднократно говорили, выносит с собой из клетки положительные заряды. Отрицательные заряды остаются внутри клетки в большинстве, и за счет этого усиливается электроотрицательность. Это и есть восстановление поляризации за счет выходящего потока ионов калия. Заметим, что выходящий поток ионов калия возникает практически одновременно с появлением натриевого потока, но нарастает медленно и длится в 10 раз дольше. Несмотря на продолжительность калиевого потока самих ионов расходуется немного – всего одна миллионная доля от запаса калия в клетке (0,000001 часть).

Подведем итоги. Восходящая ветвь графика потенциала действия образуется за счет входа в клетку ионов натрия, а нисходящая – за счет выхода из клетки ионов калия.

3. Ионные каналы

Все три стороны процесса возбуждения – электрическая, химическая и структурная – необходимы для понимания его сущности. Но все-таки все начинается с работы ионных каналов. Именно состояние ионных каналов предопределяет поведение ионов, а поведение ионов в свою очередь сопровождается электрическими явлениями. Начинают процесс возбуждения натриевые каналы .

На молекулярно-структурном уровне происходит открытие мембранных натриевых каналов. Сначала этот процесс идет пропорционально силе внешнего воздействия, а затем становится просто «неудержимым» и массовым. Открытие каналов обеспечивает вход натрия в клетку и вызывает деполяризацию. Затем, примерно через 2-5 миллисекунд, происходит их автоматическое закрытие . Это закрытие каналов резко обрывает движение ионов натрия внутрь клетки, и, следовательно, обрывает нарастание электрического потенциала. Рост потенциала прекращается, и на графике мы видим спайк. Это вершина кривой на графике, дальше процесс пойдет уже в обратном направлении. Конечно, очень интересно разобраться в том, что натриевые каналы имеют двое ворот, и открываются они активационными воротами, а закрываются инактивационными, но это следует обсуждать ранее, в теме «Возбуждение». Мы на этом останавливаться не будем.

Параллельно в открытием натриевых каналов с небольшим отставанием во времени идет нарастающее открытие калиевых каналов. Они медлительные по сравнению с натриевыми. Открытие дополнительных калиевых каналов усиливает выход положительных ионов калия из клетки. Выход калия противодействует «натриевой» деполяризации и вызывает восстановление полярности (восстановление электроотрицательности). Но натриевые каналы опережают калиевые, они срабатывают примерно в 10 раз быстрее. Поэтому входящий поток положительных ионов натрия в клетку опережает компенсирующий выход ионов калия. И поэтому деполяризация развивается опережающими темпами по сравнению с противодействующей ей поляризацией, вызванной утечкой ионов калия. Вот почему, пока натриевые каналы не закроются, восстановление поляризации не начнется.

Пожар как метафора распространяющегося возбуждения

Для того чтобы перейти к пониманию смысла динамичного процесса возбуждения, т.е. к пониманию его распространения вдоль мембраны, надо представить себе, что описанные нами выше процессы захватывают сначала ближайшие, а затем все новые, все более и более отдаленные участки мембраны, пока не пробегут по всей мембране полностью. Если вы видели «живую волну», которую устраивают болельщики на стадионе за счет вставания и приседания, то вам легко будет представить себе мембранную волну возбуждения, которая образуется за счет последовательного протекания в соседних участках трансмембранных ионных токов.

Когда мы искали образный пример, аналогию или метафору, которая может наглядно передать смысл распространяющегося возбуждения, то остановились на образе пожара. Действительно, распространяющееся возбуждение похоже на лесной пожар, когда горящие деревья остаются на месте, а фронт огня распространяется и уходит все дальше и дальше во все стороны от очага возгорания.

Как же в этой метафоре будет выглядеть явление торможения?

Ответ очевиден – торможение будет выглядеть как тушение пожара, как уменьшение горения и затухание огня. Но если огонь распространяется сам по себе, то тушение требует усилий. Из потушенного участка процесс тушения сам по себе не пойдет во все стороны.

Существует три варианта борьбы с пожаром: (1) либо надо ждать, когда все сгорит и огонь истощит все горючие запасы, (2) либо надо поливать водой горящие участки, чтобы они погасли, (3) либо надо поливать заранее ближайшие нетронутые огнем участки, чтобы они не загорелись.

Можно ли «погасить» волну распространяющегося возбуждения?

Вряд ли нервная клетка способна «погасить» этот начавшийся «пожар» возбуждения. Поэтому первый способ подходит только для искусственного вмешательства в работу нейронов (например, в лечебных целях). Но вот «залить водичкой» некоторые участки и поставить блок распространению возбуждения, оказывается, вполне возможно.

© Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.

АВТОВОЛНЫ В АКТИВНО-ВОЗБУДИМЫХ СРЕДАХ (АВС)

При распространении волны в активно-возбудимых средах не происходит переноса энергии. Энергия не переносится, а освобождается, когда до участка АВС доходит возбуждение. Можно провести аналогию с серией взрывов зарядов, заложенных на некотором расстоянии друг от друга (например, при тушении лесных пожаров, строительстве, мелиоративных работах), когда взрыв одного заряда вызывает взрыв рядом расположенного и так далее. Лесной пожар также является примером распространения волны в активно- возбудимой среде. Пламя распространяется по области с распределенными запасами энергии - деревья, валежник, сухой мох.

Основные свойства волн, распространяющихся в активно-возбудимых средах (АВС)

Волна возбуждения распространяется в АВС без затухания; прохождение волны возбуждения связано с рефрактерностью - невозбудимостью среды в течение некоторого промежутка времени (периода рефрактерности).