Современные проблемы науки и образования. Устойчивость к УФ-лучам природных изолятов Dematiaceae Пластик устойчивый к уф излучению

Кабельные нейлоновые стяжки - это универсальное средство фиксации. Они нашли применение во многих областях, в том числе при работах вне помещений. На открытом воздухе кабельные хомуты подвергаются множественным воздействиям природного характера: осадкам, ветрам, летнему зною, зимней стуже, а главное - солнечному свету.

Солнечные лучи губительны для стяжек, они разрушают нейлон, делают его хрупким и снижают эластичность, приводя к потере основных потребительских свойств изделия. В условиях средней полосы России стяжка, установленная на улице, уже за первые 2 недели может потерять 10% от заявленной прочности. Виной тому - ультрафиолет, невидимые глазу электромагнитные волны, присутствующие в дневном свете. Именно длинноволновые UVA и в меньшей степени среднедлинновые UVB (из-за атмосферы только 10% достигают поверхности Земли) УФ-диапазоны ответственны за преждевременное старение нейлоновых стяжек.

Негативное воздействие УФ повсеместно, даже в регионах, где солнечных дней совсем мало, т.к. 80% лучей проникают сквозь облака. Ситуация усугубляется в северных областях с их продолжительными зимами, поскольку проницаемость атмосферы для солнечных лучей увеличивается, а снег отражает лучи, тем самым удваивая УФ воздействие.

Большинство поставщиков предлагают использовать черную стяжку, как вариант решения проблемы старения нейлонового хомута под воздействием солнечных лучей. Стоят эти стяжки столько же, сколько и их аналоги нейтрально белого цвета, а отличие состоит лишь в том, что для получения черного цвета у готового изделия в качестве красящего пигмента в сырье добавлено незначительное количество угольного порошка или сажи. Эта добавка настолько незначительна, что не способна защитить изделие от УФ-деструкции. Такие стяжки повсеместно называются «атмосферостойкими». Надеяться, что такая стяжка будет добросовестно работать на открытом воздухе, всё равно, что в мороз пытаться согреться, одев только нижнее бельё.

При установке на улице, надежно выдерживать нагрузки в течение продолжительного периода времени способны только стяжки, изготовленные из УФ-стабилизированного полиамида 66. Их срок службы, по сравнению со стандартными стяжками под воздействием ультрафиолета, различается в разы. Положительный эффект достигается за счет добавления в сырье специальных УФ-стабилизаторов. Сценарий действия светостабилизаторов может быть различен: они могут просто вбирать в себя (абсорбировать) свет, выделяя поглощенную энергию затем в виде тепла; могут вступать в химреакции с продуктами первичного разложения; могут замедлять (ингибировать) нежелательные процессы.

Полимеры – это активные химические вещества, которые в последнее время приобретают широкую популярность из-за массового потребления пластмассовых изделий. С каждым годом растут объемы мирового производства полимеров, а изготовленные с их использованием материалы завоевывают новые позиции в бытовой и производственной сферах.

Все испытания продукции проводятся в лабораторных условиях. Их основная задача – определить факторы окружающей среды, которые оказывают разрушительное воздействие на пластмассовые изделия.

Основная группа неблагоприятных факторов, разрушающих полимеры

Стойкость конкретных изделий к негативным климатическим условиям определяется с учетом двух главных критериев:

  • химического состава полимера;
  • типа и силы воздействия внешних факторов.

При этом неблагоприятное влияние на полимерные изделия определяется по времени их полного разрушения и типу воздействия: моментальная полная деструкция или малозаметные трещины и дефекты.

К факторам, влияющим на разрушение полимеров, относятся:

  • микроорганизмы;
  • тепловая энергия различной степени интенсивности;
  • промышленные выбросы, в составе которых присутствуют вредные вещества;
  • повышенная влажность;
  • УФ-излучение;
  • рентгеновское излучение;
  • повышенный процент содержания в воздухе соединений кислорода и озона.

Процесс полного разрушения изделий ускоряется при одновременном воздействии нескольких неблагоприятных факторов.

Одной из особенностей проведения климатических испытаний полимеров является необходимость тестовой экспертизы и изучения влияния каждого из перечисленных явлений по отдельности. Однако такие оценочные результаты не могут с полной достоверностью отразить картину взаимодействия внешних факторов с полимерными изделиями. Это связано с тем, что в обычных условиях материалы чаще всего подвергаются комбинированному воздействию. При этом разрушительный эффект заметно усиливается.

Воздействие ультрафиолетовой радиации на полимеры

Существует ошибочное мнение, что пластмассовым изделиям особый вред наносят солнечные лучи. На самом деле, разрушительное влияние оказывает только ультрафиолет.

Связи между атомами в полимерах могут быть уничтожены только под воздействием лучей этого спектра. Последствия такого неблагоприятного воздействия можно наблюдать визуально. Они могут выражаться :

В лабораториях для подобных испытаний применяют ксеноновые лампы.

Также проводят эксперименты по воссозданию условий воздействия УФ-радиации, повышенной влажности и температуры.

Такие испытания нужны для того, чтобы сделать выводы о необходимости внесения изменений в химический состав веществ. Так, для того чтобы полимерный материал приобрел устойчивость к УФ-излучению, в него добавляют специальные адсорберы. За счет поглощающей способности вещества активизируется защитный слой.

Устойчивость и прочность межатомных связей также можно повысить путем введения стабилизаторов.

Разрушающее действие микроорганизмов

Полимеры относятся к веществам, которые весьма устойчивы к воздействию бактерий. Однако это свойство характерно только для изделий, изготовленных из пластмассы высокого качества.

В низкокачественные материалы добавляются низкомолекулярные вещества, которые имеют тенденцию скапливаться на поверхности. Большое число таких компонентов способствует распространению микроорганизмов.

Последствия разрушительного воздействия можно заметить довольно быстро, так как:

  • утрачиваются асептические качества;
  • снижается степень прозрачности изделия;
  • появляется хрупкость.

В числе дополнительных факторов, которые могут повлечь за собой снижение эксплуатационных характеристик полимеров, следует отметить повышенную температуру и влажность. Они создают условия, благоприятные для активного развития микроорганизмов.

Проводимые исследования позволили найти наиболее эффективный способ предотвращения размножения бактерий. Это добавление в состав полимеров специальных веществ – фунгицидов. Развитие бактерий приостанавливается за счет высокой токсичности компонента для простейших микроорганизмов.

Можно ли нейтрализовать воздействие негативных природных факторов?

В результате проводимых исследований удалось установить, что большая часть пластмассовой продукции, представленной на современном рынке, не вступает во взаимодействие с кислородом и его активными соединениями.

Однако механизм разрушения полимеров может быть запущен при комплексном воздействии кислорода и высокой температуры, влажности или ультрафиолетовой радиации.

Также при проведении специальных исследований удалось изучить особенности взаимодействия полимерных материалов с водой. Жидкость влияет на полимеры тремя способами:

  1. физическим;
  2. химическим (гидролиз);
  3. фотохимическим.

Дополнительное одновременное воздействие повышенной температуры может ускорить процесс разрушения полимерных изделий.

Коррозия пластмасс

В широком смысле это понятие подразумевает разрушение материала под негативным воздействием внешних факторов. Так, под термином «коррозия полимеров» следует понимать изменение состава или свойств вещества, вызванное неблагоприятным влиянием, которое приводит к частичному или полному разрушению изделия.

Процессы целенаправленного преобразования полимеров для получения новых свойств материалов к этому определению не относятся.

О коррозии следует говорить, например, когда поливинилхлорид соприкасается и взаимодействует с химически агрессивной средой – хлором.

Что это такое?

Чем так хороша уф-печать?

Зачем платить больше?

Принцип ультрафиолетовой печати

Ультрафиолетовая печать (уф-печать) — это один из видов печати с использованием УФ-отверждаемых чернил методом струйной печати непосредственно на материал. При воздействии УФ-излучения определенной волны такие чернила моментально полимеризуются и переходят в твердое состояние. Так как, чернила не впитываются в материал и не растекаются по поверхности, это позволяет создавать яркие и насыщенные изображения.

УФ-чернила после полимеризации имеют матовую поверхность, поэтому для придания глянцевости необходима дополнительная обработка лаком. Но если использовать печать на стекле с обратной стороны, то изображения получаются сочными и глянцевыми. Таким образом, изображение может наноситься на любую поверхность. Глянцевые поверхности перед нанесением обрабатывают специальным раствором, который помогает чернилам удерживаться на поверхности материала. Даже без лака после полимеризации чернила перестают испарять вредные растворители и становятся безвредными для человека.

При печати на прозрачных материалах (стекло, оргстекло) с белым цветом получаем несколько слоев: основа (стекло) + праймер (для сцепления с поверхностью) + цветные уф-краски + белая уф-краска + белая защитная пленка безопасности.

В чем же заключаются преимущества печати ультрафиолетовыми чернилами?

  • Стойкость
    УФ-чернила очень устойчивы к воздействиям окружающей среды. Кроме того, они являются более прочными — не выгорают на солнце и не растворяются в воде и растворителе.
  • Экологичность
    ​Компоненты, входящие в состав UV чернил, в отличии от сольвентных красок, не содержат растворителей на основе смол. В процессе работы с чернилами практически исключается вредное влияние на атмосферу и человека. Это позволяет использовать ультрафиолетовую печать в местах с повышенными санитарными требованиями (школы, детские сады, больницы) и в интерьере.
  • Большой выбор материала и поверхностей
    ​​УФ-чернила не впитываются в материал, а остаются на поверхности. Именно поэтому можно печатать на любых материалах: гибких или твердых, с гладкими или неровными поверхностями.
  • Яркие и сочные краски
    ​​Т.к. уф-чернила не впитываются и не растекаются, то краски не тяряют сочности, а отсутствие растекания позволяет печатать четкие изображения как в исходном файле. Именно поэтому можно печатать на любых поверхностях без потери сочности и четкости.
  • Долговечность
    Во внутренней рекламе срок службы УФ печати составляет 10 - 15 лет, а в наружной ограничивается 4-5 годами. Это объясняется тем, что на улице рекламные материалы все же подвержены воздействиям ультрафиолетового облучения и значительным перепадам температуры.
  • Печать белым цветом
    ​В настоящее время очень мало принтеров может похвастаться возможностью печати белым цветом. При этом белый цвет может быть подложкой, укрывистым, и просто как 5-й дополнительный цвет при печати на темных поверхностях

Так зачем платить за уф-печать?

Сама технология уф-печати значительно дороже простой интерьерной печати сольвентными плоттерами. Но при использовании печати на сольвентном плоттере есть ряд значительных недостатков, в том числе и вредных для здоровья, так как даже спустя несколько дней сольвентные чернила продолжают испаряться с поверхности пленки. А уж список заболеваний, которые она вызывает в приличном месте лучше не произносить.

Для примера давайте рассмотрим самый распространенный случай - изготовление скинали (кухонного фартука)

Итак, скинали устанавливается на кухне между нижними и верхними ящиками, в непосредственной близости от приготовления пищи . Естественно в таком случае использовать более экологичную продукцию . Закаленное стекло за газовой плитой находится в зоне с перепадами температуры , и пленка в таких местах может "поплыть", с появлением пузырей и ссыханием пленки к центру стекла, что в свою очередь приводит к появлению прозрачных полос по краям скинали. Это особенно критично выглядит на стыках отдельных стекол . Всего этого уф-печать лишена, т.к. она наносится прямо на стекло и не боится высоких температур. Дополнительным бонусом будет высокое качество картинки и печать в край стекла, запечатываются даже скосы.

Разница в стоимости одного кв.м фотопечати на пленке и уф-печати составляет 600-800 руб. При длине фартука в 4 п.м. дополнительные затраты составят 1.5 - 2 тыс. руб. Но за эти деньги Вы получите яркие краски, без пыли и мусора под пленкой, без прозрачных краев, с гарантией на 10-15 лет. Вы достойны хорошего товара за потраченные деньги!

Выше уже отмечалось (см. предыдущую статью) что лучи УФ - диапазона принято делить на три группы в зависимости от длины волны:
[*]Длинноволновое излучение (UVA) – 320-400 нм.
[*]Среднее (UVB) – 280-320 нм.
[*]Коротковолновое излучение (UVC) – 100-280 нм.
Одна из основных трудностей при учете воздействия УФ – излучения на термопласты состоит в том, что его интенсивность зависит от множества факторов: содержания озона в стратосфере, облаков, высоты местоположения, высоты стояния солнца над горизонтом (как в течение суток, так и в течение года) и отражения. Сочетание всех этих факторов и определяет уровень интенсивности УФ-излучения, что отражено на данной карте Земли:

В зонах, окрашенных в темно-зеленый цвет интенсивность УФ-излучения наивысшая. Кроме того, необходимо учитывать что повышенная температура и влажность дополнительно усиливают эффект воздействия УФ – излучения на термопласты (см. предыдущую статью).

[B]Основной эффект от воздействия УФ – излучения на термопласты

Все виды УФ – излучения могут вызывать фотохимический эффект в структуре полимерных материалов, который может как приносить пользу, так и приводить к деградации материала. Тем не менее, по аналогии с человеческой кожей, чем вышек интенсивность излучения и чем меньше длина волны, тем больше риск деградации материала.

[U]Деградация
Основной видимый эффект от воздействия УФ–излучения на полимерные материалы – появление т.н. «меловых пятен», изменение цвета на поверхности материала и повышение хрупкости участков поверхности. Данный эффект можно часто наблюдать на пластиковых изделиях, постоянно эксплуатируемых вне помещений: сиденьях на стадионах, садовой мебели, тепличной пленке, оконных рамах и т.д.

В то же время, нередко изделия из термопластов должны выдерживать воздействие УФ-излучения таких видов и интенсивности, которые не встречаются на Земле. Речь идет, например, об элементах космических аппаратов, что требует применения таких материалов как FEP.

Отмеченные выше эффекты от воздействия УФ-излучения на термопласты отмечаются, как правило, на поверхности материала и редко проникают в структуру глубже 0.5 мм. Тем не менее, деградация материала на поверхности при наличии нагрузки может приводить к разрушению изделия в целом.

[U]Положительные эффекты
В последнее время широкое применение нашли специальные полимерные покрытия, в частности на основе полиуретан-акрилата, «самозалечивающиеся» под воздействием УФ-излучения. Обеззараживающие свойства УФ-излучения широко используются, к примеру, в кулерах для питьевой воды и могут быть дополнительно усилены хорошими пропускающими свойствами PET. Данный материал используется также в качестве защитного покрытия на УФ инсектицидных лампах, обеспечивая пропускание до 96% светового потока при толщине 0.25 мм. УФ-излучение применяется, также, для восстановления чернил нанесенных на пластиковую основу.

Положительный эффект от воздействия УФ-излучения дает применение флуоресцентных отбеливающих реагентов (FWA). Многие полимеры при естественном освещении имеют желтоватый оттенок. Однако введение в состав материала FWA УФ-лучи поглощаются материалом и излучают обратно лучи видимого диапазона голубого спектра с длиной волны 400-500 нм.

[B]Воздействие УФ-излучения на термопласты

Энергия УФ-излучения, поглощенная термопластами, возбуждает фотоны, которые, в свою очередь, формируют свободные радикалы. В то время как многие термопласты в натуральном, чистом виде, не поглощают УФ-излучение, наличие в их составе остатков катализаторов и пр. загрязнений, служащих рецепторами, может приводить к деградации материала. Причем для начала процесса деградации требуются ничтожные доли загрязнителей, например миллиардной доли натрия в составе поликарбоната ведет к нестабильности цвета. В присутствии кислорода свободные радикалы формируют гидроперекись кислорода, которая ломает двойные связи в молекулярной цепочке, что делает материал хрупким. Данный процесс часто называют фотоокислением. Однако даже при отсутствии водорода все равно происходит деградация материала вследствие связанных процессов, что особенно характерно для элементов космических аппаратов.

Среди термопластов, обладающих в немодифицированном виде неудовлетворительной стойкостью к УФ-излучению можно отметить POM, PC, ABS и PA6/6.

PET, PP, HDPE, PA12, PA11, PA6, PES, PPO, PBT считаются достаточно стойкими к УФ-излучению, как и комбинация PC/ABS.

Хорошей стойкостью к УФ-излучению обладают PTFE, PVDF, FEP и PEEK.

Великолепной стойкостью к УФ-излучению обладают PI и PEI.

В.И. Третьяков, Л.К. Богомолова, O.A. Крупинина

Одним из наиболее агрессивных видов эксплуатационных воздействий на полимерные строительные материалы является УФ-облучение.

Для оценки стойкости полимерных строительных материалов используют как натурные, так и ускоренные лабораторные испытания.

Недостатком первых является большая продолжительность испытания, невозможность выделения влияния отдельного фактора, а также сложность учета годичных колебаний атмосферных воздействий.

Достоинством ускоренных лабораторных испытаний является проведение их в сжатые сроки. При этом в отдельных случаях удается описать полученные зависимости изменения свойств во времени известными математическими моделями и прогнозировать их стойкость на более длительные сроки эксплуатации.

Целью данной работы являлась оценка стойкости к УФ-облучению в условиях Краснодарского края образцов белого цвета ламинированной полипропиленовой ткани со спецдобавками в наиболее сжатые сроки.

Ламинированная полипропиленовая ткань применяется для временной защиты возводимых и реконструируемых строительных конструкций, а также отдельных элементов от атмосферных воздействий.

Стойкость материала к воздействию УФ-облучения оценивали по изменению прочности при растяжении по ГОСТ 26782002 на образцах - полосках, размерами (50х200)±2 мм и изменению внешнего вида (визуально).

За предельное значение старения материала принято снижение его прочности до 40% от исходной величины.

Испытания на прочность при растяжении проводили на универсальной испытательной машине «ZWICK Z005» (Германия). Исходная прочность при растяжении испытанных образцов составила

115 Н/см. „ "

" Рисунок 1.

Ультрафиолетовое облучение образ- исХОдНОг0

цов материала проводили в аппарате ис- облучения

кусственной погоды (АИП) типа «Ксенотест» с ксеноновым излучателем ДКСТВ-6000 по ГОСТ 23750-79 с водяной системой охлаждения и рубашкой из кварцевого стекла. Интенсивность излучения в диапазоне длин волн 280-400 нм составила 100 Вт/м2. Часовая доза УФ-облучения (О) равна 360 кДж/м2 при данном спектральном режиме.

В процессе экспозиции в АИП интенсивность облучения ткани контролировали интенсимет-ром - дозиметром фирмы «ОБкДМ» (Германия).

Облучение образцов проводили в непрерывном режиме в течение 144 ч (6 суток). Съемы образцов для оценки изменения прочности при растяжении проводили через определенные промежутки времени. Зависимость остаточной прочности при растяжении (в %) от исходного значения ламинированной полипропиленовой ткани от времени облучения в АИП представлена на рисунке 1.

После математической обработки полученных данных по методу наименьших квадратов полученные экспериментальные результаты обобщены линейной зависимостью, представленной на рисунке 2.

20 40 60 80 100 120 140 160 Зависимость остаточной прочности при растяжении (в %) от значения ламинированной полипропиленовой ткани от времени в АИП

строительные материалы и конструкции

теорологической обсерватории МГУ составляет 120000 кДж/м2 год (О ф М)

Вместе с тем, данные по годовой дозе УФ-части солнечной радиации по Краснодарскому краю (Оуф к к) в литературе отсутствуют. Приведенные выше значения Осум для Москвы и краснодарского края позволяют приближенно рассчитать суммарную годовую дозу УФ-облучения для краснодарского края по следующей формуле:

О ф -О к /О

уф М сумм К.к"

Рисунок 2. Линейная зависимость остаточной прочности при растяжении ламинированной полипропиленовой ткани от логарифма времени облучения в АИП

1 - экспериментальные значения; 2 - значения, рассчитанные с помощью уравнения (1)

следовательно,

Оф к = 1200001,33 =

160320 кДж/м2год

П% = П0 - 22,64-1дт,

где П% ост - остаточная величина прочности при растяжении (в %) после УФ-облучения; П0 - исходная величина прочности при растяжении (в %), равная 100; 22,64 - величина, численно равная тангенсу угла наклона прямой в координатах: остаточная прочность при растяжении (в %) - логарифм времени облучения в АИП; Т - время облучения в АИП, в ч.

Результаты математической обработки (см. уравнение (1) и рисунок 2) позволяют экстраполировать полученные данные на более длительный период испытания.

Анализ полученных результатов показывает, что снижение остаточной прочности ламинированной полипропиленовой ткани до 40% произойдет через 437 ч облучения. При этом, суммарная доза УФ-излучения составит 157320 кДж/м2.

Визуальная оценка внешнего вида облучаемого материала показывает, что уже через 36 ч облучения ткань имеет более плотную структуру, становится менее рыхлой и менее блестящей. При дальнейшем облучении жесткость и плотность ткани возрастают.

Согласно ГОСТ 16350-80 суммарная доза солнечного излучения (Осумм) для умеренного теплого с мягкой зимой климата краснодарского края (ГОСТ, таблица 17) составляет 4910 МДж/м2 (Осум Кк), а для умеренного климата Москвы - 3674 МДж/м2 (Осум М). Годовая доза УФ-части солнечной радиации по данным Московской ме-

Сопоставление годовой дозы УФ-облучения для краснодарского края (160320 кДж/м2) с дозой УФ-облучения в лабораторных условиях (157320 кДж/м2) позволяет сделать вывод, что в натурных условиях прочность материала снизится до 40% от исходной величины под действием УФ-облучения приблизительно за один год.

Выводы. По представленному материалу можно сделать следующие выводы.

1. Изучена стойкость образцов ламинированной полипропиленовой ткани строительного назначения к действию УФ-облучения в лабораторных условиях.

2. Расчетным путем определена годовая доза УФ-облучения для краснодарского края, составляющая 160320 кДж/м2.

3. По результатам лабораторных испытаний в течение 144 ч (6 суток) было установлено, что изменение прочности при растяжении под воздействием УФ-облучения описывается логарифмической зависимостью, носящей линейный характер, что позволило использовать ее для прогнозирования светостойкости полимерной ткани.

4. На основании полученной зависимости было определено, что снижение прочности ламинированной полипропиленовой ткани строительного назначения до критического уровня под воздействием УФ-облучения в натурных условиях краснодарского края произойдет приблизительно через один год.

Литература

1. ГОСТ 2678-94. Материалы рулонные кровельные и гидроизоляционные. Методы испытаний.

строительные материалы и конструкции

2. ГОСТ 23750-79. Аппараты искусственной погоды на ксеноновых излучателях. Общие технические требования.

3. ГОСТ 16350-80. Климат СССР. Районирование и статистические параметры климатических факторов для технических целей.

4. Сборник наблюдений метеорологической обсерватории МГУ. М.: Изд-во МГУ, 1986.

Ускоренный метод оценки стойкости к УФ-облучению ламинированной полипропиленовой ткани строительного назначения

Для оценки светостойкости образцов ламинированной полипропиленовой ткани строительного назначения к воздействию УФ-облучения в лабораторных условиях по снижению прочности при растяжении испытуемого материала до предельного значения 40% получена линейная зависимость остаточной прочности от времени облучения в аппарате искусственной погоды в логарифмических координатах.

На основании полученной зависимости было определено, что снижение прочности ламинированной полипропиленовой ткани строительного назначения до критического уровня под воздействием УФ-облучения в натурных условиях Краснодарского края произойдет приблизительно через один год.

The accelerated method of an estimation of resistance of the laminated polypropylene fabrics for building appointment to the ultraviolet-irradiation

by V.G. Tretyakov, L.K. Bogomolova, O.A. Krupinina

For an estimation of light resistance of laminated polypropylene fabric samples for building appointment to ultraviolet-irradiation influence in vitro on durability decrease at a stretching of a tested material to limiting value of 40% the linear dependence of residual durability on irradiation time in the device of artificial weather in logarithmic co-ordinates is received.

On the basis of the received dependence it has been defined that decrease in durability laminated polypropylene fabrics for building to critical level under the influence of the ultraviolet-irradiation in natural conditions of Krasnodar territory would be occur approximately in one year.

Ключевые слова: светостойкость, ультрафиолетовое облучение, прогнозирование, критический уровень прочности, климат, ламинированная полипропиленовая ткань.

Key words: light resistance, ultraviolet-irradiation, prognostication, critical level of durability, climate, laminated polypropylene fabric.