Зазор компрессионных колец. Тепловой зазор в замке поршневых колец

Двигатель — это главная деталь в любом автомобиле. Благодаря ему машина движется вперёд и работает электроника. Поэтому так важно, чтобы каждый элемент мотора был в идеальном состоянии. В противном случае существует риск того, что машина остановится посреди дороги и откажется заводиться.

Главные элементы двигателя это цилиндры. В них двигаются поршни, и от того, насколько хорошо взаимодействуют эти детали зависит работа всей системы. Именно поэтому так важно, чтобы зазор поршневых колец чётко укладывался в норматив.

Внимание! К поршням предъявляются особенно высокие требования, так как они взаимодействуют с инертными газами.

По сути, внутри цилиндров происходит микровзрыв, который заставляет поршни двигаться в нужном направлении. В результате проворачивается коленчатый вал и вырабатывается механическая энергия.

Поэтому на зазор поршневых колец также влияет и высокая температура, которая является результатом реакции, которая происходит внутри цилиндров. По крайней мере, именно так процесс протекает в ДВС.

Работа дизельного и бензинового ДВС

Чтобы лучше понимать значение зазора поршневых колец в работе двигателя рассмотрим, как работают две наиболее распространённые системы. В действительности, разница между ними не так велика, по крайней мере, в конструкционном плане.

Главное отличие заключается в процессе воспламенения. В дизельных двигателях он происходит благодаря повышению давления. В результате растёт температура, после чего форсунка впрыскивает топливо внутрь, и воспламенение происходит само собой.

Внимание! Всё дело в том, что температура воспламенения дизельного топлива ниже, чем у бензина.

Бензиновый двигатель устроен немного по-другому. Вместо форсунки, в верхней части поршней устанавливаются свечи, которые и подают искры. Естественно, при такой конструкции нормальный зазор поршневых колец очень важен.

Внимание! КПД дизельного двигателя выше, чем у бензинового. Также нужно отметить что дизельные агрегаты куда более безопасные для экологии.

Что собой представляет зазор поршневых колец


Каждая деталь ДВС подвергается воздействию высокой температуры. В результате чего происходит расширение. Из-за протекания этого процесса изначальные параметры детали меняются. В наибольшей степени это влияет на элементы, которые вплотную прилегают друг к другу.

Внимание! Результатом теплового расширения является то, что пространство между частями механизмов постепенно исчезает.

Исчезновение теплового пространства негативно влияет на зазор поршневых колец. Это в свою очередь плохо сказывается на работе поршня, а значит, и всего двигателя. Чтобы вся система работала без перебоев за этим параметром нужно следить.

Тепловой зазор поршневых колец представляет собой важный конструкционный элемент, обеспечивающий нормальную работу поршневых кругов. Чтобы он нормально функционировал в канавке должно быть достаточно места для свободного вращения. Если же деталь застрянет, то о нормальном отводе тепла придётся забыть.

Важно! Ещё одно свойство поршневых колец заключается в обеспечении дополнительного уплотнения конструкции.

Каким должен быть зазор


Кольца в поршне могут быть компрессионными и маслосъемными. Главная задача первых это удержание сгоревших газов внутри цилиндра. В свою очередь, маслосъемные изделия должны снимать лишнее масло со стенок.

Поршневые кольца несплошные. Они имеют небольшой разрез, который и называется зазором. Благодаря ему обод не заклинивает, когда происходит нагрев. Мало того, данный конструкционный элемент способствует тому, что поршень максимально плотно прижимается к стенкам цилиндра.

Внимание! Чтобы цилиндр и кольца нормально работали тепловое пространство должно быть не более 0,6 мм. Значение также имеет и нижнюю границу. Она не может быть меньше 0,3 мм.

Если описанный диапазон не соблюдается, то велик риск повреждения цилиндра и выхода из строя всего двигателя. Оптимальным для нормальной работы считается косой срез. Благодаря ему давление, оказываемое на стенки, является более равномерным. Подобного эффекта удаётся достичь за счёт более тонких краёв.

В большинстве случаев механики-аматоры стараются минимизировать зазор поршневых колец. Поэтому всеми силами подводят расстояние до показателя в 0,2 мм. Результатом чрезмерного рвения являются задиры на кольцах и цилиндрах. Подобные деформации появляются из-за того, что при нагреве пространство в замке уменьшается. Из-за этого происходит врезание в стенку цилиндра.

Роль поршневых колец в эксплуатации двигателя


Есть ряд условий, соблюдение которых гарантирует долгую эксплуатацию поршневых колец. Во многом они зависят от характеристик зазора. Чтобы двигатель прослужил долгое время, необходим правильный зазор, который помогает в контроле таких параметров, как:

  1. Температура. От этого параметра зависит сама возможность работы системы. Если температура будет слишком высокой, то поршень расплавится за несколько секунд.
  2. Давление. В данном случае поршневые кольца играют роль уплотнителей. Само собой, что без правильного зазора эта функция будет трудноосуществимой. При возникновении давления, круги прижимаются к плоскости цилиндра. Правильный зазор позволяет максимально стабильно распределить силу давления.
  3. Подача масла. За этот параметр отвечают маслосъемные поршневые кольца. У них есть две перемычки. Именно они регулируют подачу субстанции в нужном количестве. Обычно данный параметр устанавливается на показателе в 1- 2 мкм. При оптимальной подаче уменьшается потребление бензина.

При правильном выставлении данных параметров срок эксплуатации каждой детали двигателя возрастает в несколько раз. Большую роль в их регулировке играют поршневые кольца и их зазоры.

Как замерить зазор поршневых колец

На первом этапе вам нужно просто визуально осмотреть деталь. На ней не должно быть трещин или каких-либо других дефектов. Если вы заметили даже мелкое механическое повреждение элемент нужно заменить на новый.


Также не помешают некоторые профилактические процедуры. Головку поршня нужно очистить от нагара, при этом особое внимание необходимо уделить канавкам, которые находятся под кольцами. Только после этих процедур можно приступать к осмотру зазора.

Так как колец в устройстве всего три. Для каждого существуют свои параметры:

  • Верхнее компрессионное 1-0.04-0,075 мм.
  • Нижнее компрессионное 2-0,03-0,065 мм.
  • Маслосъемное 3-0,02-0,055 мм.

При замерах будьте крайне внимательны. Для каждого кольца существует свой оптимальный размер зазора. Для большей точности воспользуйтесь микрометром. Это прибор, который позволяет с предельной точностью замерить все нужные вам параметры. Для этого существуют специальные щупы, позволяющие легко и быстро снять показания с канавок.

Итоги

Замерить зазор поршневых колец можно самостоятельно. Для этого достаточно взять специальный прибор под названием микрометр. Конечно же, можно воспользоваться более примитивными инструментами или даже сделать это на глаз. Но в таком случае, ни о какой точности не может идти и речи. Хотя приблизительный замер должен дать вам основное понятие о том, стоит ли проводить замену.

Поршневые кольца в разжатом состоянии имеют больший диаметр, чем когда они уже установлены. Это нужно для того, чтобы в установленном состоянии создать необходимое всестороннее прижимное усилие во внутреннем диаметре цилиндра.

Измерить давление прижима во внутреннем диаметре цилиндра на практике трудно. Поэтому диаметральная сила, которая прижимает кольцо к стенке цилиндра, высчитывается с помощью формулы из тангенциальной силы. Тангенциальная сила - это сила, которая необходима, чтобы стянуть стыковые концы на стыковой зазор (рис. 1). Тангенциальную силу измеряют при помощи гибкой стальной ленты, которая располагается вокруг кольца. Этот стальной обод стягивается тогда до тех пор, пока стыковой зазор поршневого кольца не достигает предписанного значения. Сила можетзатем считываться с динамометра. Измерение маслосъёмных поршневых колец происходит только с вложенной пружиной-расширителем. Чтобы обеспечить точность измерения, измерительная установка подвергается вибрации. Это делается для того, чтобы пружина - расширитель смогла за кольцом принять её естественную форму. Из-за их конструкции, у состоящих из трёх частей поршневых колец со стальными пластинками и с пружинным расширителем дополнительно необходима осевая фиксация колец, так как иначе стальные пластинки уходили бы в сторону, и измерение было бы невозможным. Рисунок 2 показывает схему измерения тангенциальной силы.

Рис. 1



Рис. 2

Важное указание: У поршневых колец из-за радиального износа, вызванного полусухим трением или более длительной эксплуатацией, происходит потеря тангенциального напряжения. Измерение напряжения имеет смысл только у новых колец с ещё полным поперечным сечением.

Распределение радиального давления

Радиальное давление зависит от эластичности материала, зазора в замке ненапряжённого поршневого кольца и, не в последнюю очередь, от поперечного сечения кольца. При распределении радиального давления имеются два вида основных различий. При этом, самым простым видом является симметричное распределение радиального давления (рис. 3). Оно встречается, прежде всего, у составных маслосъёмных колец, состоящих из гибкой упрочняющей вставки для кольца или из стальных пластинок с относительно низким начальным напряжением. Пружина-расширитель придавливает упрочняющую вставку и, соответственно, стальные пластинки, за которыми она лежит, к стенке цилиндра. Пружина-расширитель, которая в сжатом состоянии (монтаж) упирается в обратную сторону упрочняющей вставки или стальных пластинок, создает симметричное радиальное давление.

У компрессионных поршневых колец, предназначенных для четырёхтактных ДВС, отказались от симметричного распределения радиального давления. Вместо него используют грушевидное распределение (так называемое позитивно - овальное), чтобы при более высокой частоте вращения противодействовать вибрации стыкующих концов кольца (рис. 4). Вибрация кольца всегда начинается на стыковых концах и переходит дальше на весь его объём. Увеличение усилия прижима на стыковых концах противодействует этой вибрации, так как поршневые кольца в этой области сильнее прижимаются к стенке цилиндра и, вследствие этого, вибрация поршневого кольца уменьшается или совсем прекращается.

Усиление давления прижима давлением сгорания

Гораздо более важнее чем начальное напряжение поршневых колец - это усиление давления прижима давлением сгорания, которое действует на компрессионные поршневые кольца во время работы двигателя.

Около 90 % общего усилия прижима первого компрессионного кольца создаётся давлением сгорания во время рабочего такта. Давление рапределяется, как это показано на рисунке 1, за компрессионными кольцами и придавливает их ещё сильнее к стенке цилиндра. Увеличение усилия прижима оказывает влияние преимущественно на первое компрессионное кольцо, но продолжает действовать в ослабленной форме также на второе компрессионное кольцо.

Давление газа для второго поршневого кольца регулируется благодаря изменению стыкового зазора первого компрессионного кольца. Из-за немного большего стыкового зазора создаётся, например, большее давление сгорания на тыльной стороне второго компрессионного кольца, что также и здесь усиливает прижатие. При большем количестве компрессионных колец, начиная со второго компрессионного кольца, не происходит никакого увеличения давления прижима с помощью давления газа сгорания.

Маслосъёмные поршневые кольца работают на основе их начального напряжения. Из-за особенной формы колецдавление газа не может действовать здесь в качестве усилителя прижима.

Кроме того, распределение силы в поршневом кольце зависит от формы рабочей поверхности поршневого кольца. У конических и у шлифованных компрессионных колец выпуклой формы давление газа попадает также в щель между рабочей поверхностью поршневого кольца и стенкой цилиндра и действует против давления газа, которое образуется за поршневым кольцом (смотри главу 1.3.1 Компрессионные поршневые кольца).

Осевое усилие прижима, которое оказывает действие на компрессионное поршневое кольцо в нижней боковой поверхности канавки, создаётся лишь давлением газа. Начальное напряжение колец вовсе не действует в осевом направлении.



Важное указание: Во время холостого хода из-за худшего заполнения камер сгорания давления прижима колец давлением газа увеличивается, в принципе, не так сильно. Это особенно заметно у дизельных двигателей. Двигатели, которые долго работают на холостом ходу, имеют повышенный расход масла, так как маслосъёмная функция страдает при отсутствии поддержки давлением газа. Часто двигатели при газовании после длительной фазы холостого хода выбрасывают из выхлопа голубые облака масла, так как масло накопилось в камере сгорания и в выпускной системе и сжигается только при газовании.

Специфическое давление прижима

Специфическое давление прижима зависит от упругости кольца и поверхности прилегания кольца к стенке цилиндра (F х А). Чтобы удвоить специфическое усилие прижима, имеются две возможности: либо удваивают упругость кольца, либо делят пополам поверхность прилегания кольца в цилиндре. На рисунке видно, что результирующая сила (специфическое усилие прижима = сила х площадь), которая действует на стенку цилиндра, постоянно одна и та же, хотя упругость кольца удвоена или, соответственно, поделена пополам.

У более новых двигателей - тенденция к меньшей высоте кольца, так как нужно понизить внутреннее трение в двигателе. Однако, это можно осуществить только в том случае, если уменьшить эффективную поверхность соприкосновения кольца со стенкой цилиндра. При уменьшении высоты кольца вполовину, уменьшается также в два раза упругость поршневого кольца и, вместе с тем, трение.

Так как оставшаяся сила действует на более маленькую площадь, специфическое давление прижима на стенку цилиндра (сила х площадь) при половине площади и половине напряжения остаётся таким же, как при двойной площади и двойном напряжении.



Рис. 2



Рис. 3

Внимание

Одна только упругость кольца не может использоваться для оценки усилия прижима и уплотняющих качеств. Поэтому при сравнении поршневых колец также всегда необходимо обращать внимание на размер рабочей поверхности.

Тепловой зазор

Тепловой зазор - это важная особенность конструкции для обеспечения работы поршневых колец. Это можно сравнить с зазором у впускного и выпускного клапанов. При нагреведеталей из-за естественного теплового расширения происходит их удлинение или увеличение ихдиаметра. В зависимости от разницы между температурой окружающей среды и рабочей температурой необходим больший или меньший зазор, измеренный в холодном состоянии, чтобы обеспечить функционирование при рабочей температуре.

Основным условием для правильного функционирования поршневых колец является возможность свободного вращения колец в канавках. Если бы поршневые кольца застревали в канавках, то они не могли бы ни уплотнять, ни отводить тепло. Тепловой зазор, который должен существовать ещё также и при рабочей температуре, гарантирует, что объём поршневого кольца, благодаря его тепловому расширению, всегда будет меньше, чем объём цилиндра. Если бы тепловой зазор из-за теплового расширения полностью исчез, то стыковые концы поршневого кольца были бы прижаты друг к другу. При ещё большем давлении поршневое кольцо должно даже деформироваться, чтобы компенсировать изменение длины,причиной которого является нагрев. Так как раздвижение поршневого кольца из-за теплового расширения в радиальном направлении невозможно, изменение длины может компенсироваться только в осевом направлении. На рисунке 2 показано, как деформируется кольцо, если становится слишком тесно во внутреннем диаметре цилиндра.



Рис. 1



Рис. 2

Следующие вычисления показывают на примере поршневого кольца с диаметром в 100 мм, как изменяется длина окружности кольца при рабочей температуре.

Пример:

диаметр цилиндра d 100 мм

температура окружающей среды t t 20°С

рабочая температура t 2 200°С

коэффициент упругости чугуна а 0,000010

длина окружности поршневого кольца

U = 100 х 3,14 = 314 мм U = 1 2

изменение длины поршневого кольца при рабочей температуре

Д1 = 1 1 х а х Дt Д1 = 1 1 х а х (t 2 - t 1)

Д1 = 314 х 0,000010 х 180 = 0,57 мм

Чтобы функция была правильной, для этого примера нужен тепловой зазор минимум 0,6 мм. Расширяются, однако, не только поршень и поршневые кольца, но и внутренний диаметр цилиндра становится больше из-за нагрева при рабочей температуре. По этой причине тепловой зазор снова может быть несколько меньше. Внутренний диаметр цилиндра расширяется при воздействии тепла всё-таки далеко не так сильно, как поршневое кольцо. С одной стороны, структура блока цилиндров жёстче чем структура поршня, с другой стороны, поверхность цилиндра не становится такой горячей как поршень с поршневыми кольцами.

К тому же увеличение диаметра цилиндра, благодаря тепловому расширению по всей его рабочей поверхности не одинаково. Внутренний диаметр цилиндра под влиянием тепла от сгорания в верхней части будет сильнее расширяться, чем в нижней части. Из-за неравномерного теплового расширения внутреннего диаметра цилиндра происходит отклонение от цилиндрической формы, которая принимает лёгкую форму воронки (рис. 3).

Рис. 3

Уплотнительная поверхность поршневого кольца

Поршневые кольца уплотняют не только на рабочей, но и на боковой поверхности. Уплотнение на рабочей поверхности отвечает за уплотнение между кольцом и стенкой цилиндра; нижняя боковая поверхность канавки - за уплотнение обратной стороны кольца. Поэтому необходим хороший контакт не только кольца со стенкой цилиндра, но и с нижней боковой поверхностью кольцевой канавки поршня. Если этого контакта нет, то масло или отработавшие газы могут пройти мимо обратной стороны кольца.

С помощью рисунков можно очень легко представить, что из-за износа (грязи и длительной эксплуатации) уплотнение обратной стороны кольца больше не гарантируется, и что увеличивается передача газа и масла по кольцевой канавке. Поэтому оснащать изношенные кольцевые пазы новыми кольцами безнадёжная затея. Неровности боковой поверхности канавки мешают уплотнению кольца, а расширенная в высоту канавка допускает больше свободы движения для него. Так как кольцо из-за слишком большого зазора по высоте неправильно лежит в канавке, кольцо гораздо легче отделяется от боковой поверхности канавки, откачивается масло (рис. 2 и 3), кольцо вибрирует и ухудшается герметизация. Кроме того, рабочая поверхность кольца становится чрезмерно выпуклой. Это является причиной возникновения слишком толстой масляной плёнки и повышенного расхода масла.



Рис. 1



Рис. 2 - Такт впуска



Рис. 3 - Такт сжатия

Дросселирующая щель и просачивание газов из камеры сгорания в картер двигателя

Так как с помощью используемых в моторостроении поршневых колец невозможно достичь в конструкции 100%-ной герметизации от газов, то происходит утечка газов, так называемых Blow-by-газов (газов, проникших в картер двигателя из камеры сгорания). Отработавшие газы попадают через самые маленькие зазоры в поршне и поршневых кольцах в кривошипную камеру. При этом количество просачивающегося газа определяется величиной дросселирующего окна. Она результируется из теплового и рабочего зазоров поршня. В действительности дросселирующее окно по сравнению с представленным на графике - микроскопически маленькое. Как правило, для расчёта максимального прорыва газов из камеры сгорания в картер двигателя берут примерно 1 % всасываемой воздушной массы. В зависимости от положения поршневого кольца при эксплуатации производится больше или меньше Blow-by-газов. Если в кольцевых канавках стыковые зазоры первого и второго компрессионных поршневых колец конгруэнтны, то из камеры сгорания в картер двигателя просачивается больше газов. При постоянной эксплуатации это происходит периодически, так как кольца вращаются в канавках со скоростью в несколько оборотов в минуту. Если стыковые зазоры лежат точно напротив друг друга, просачивающийся газ имеет, конечно, ещё один дополнительный путь через уплотняющий лабиринт, так что утечка газа сокращается. Газ, проникший в кривошипную камеру из камеры сгорания, направляется через систему вентиляции картера назад в такт впуска и сжигается. Причиной для этого являются вредные для здоровья качества газов. Благодаря повторному сжиганию в двигателе они обезвреживаются. Кроме того, вентиляция кривошипной камеры необходима, так как избыточное давление в ней привело бы к повышенному выделению масла на радиальныхуплотнительных кольцах для вала.



Если просачивание газов из камеры сгорания в картер двигателя усилено, это указывает либо на значительный износ поршневых колец по прошествии длительного срока эксплуатации, либо днище поршня обнаруживаетужетрещины, позволяющие попадать отработавшим газам в кривошипную камеру. Но также и неправильные геометрическиехарактеристики цилиндра ведут к усиленному просачиванию газов из камеры сгорания в картер двигателя. У стационарных двигателей или двигателей испытательного стенда просачивание газов из камеры сгорания в картер двигателя постоянно измеряется, контролируется, а также используется в качестве предупредительного индикатора для возникающих повреждений двигателя. Если измеренное количество газа, просачившегося из камеры сгорания в картер двигателя, превосходит максимально допустимую величину, двигатель автоматически прекращает работу. Благодаря этому можно избежать серьёзных и дорогостоящих повреждений двигателя.

Зазор кольца по высоте

Зазор кольца по высоте (рис. 1) не является результатом износа в кольцевой канавке. Зазор по высоте - это важная функциональная величина, для того, чтобы обеспечить правильное функционирование поршневых колец. Зазор кольца по высоте гарантирует, что кольца могут свободно двигаться в кольцевых канавках.

Он должен быть по величине таким, чтобы кольцо при рабочей температуре не заедало и чтобы достаточное давление сгорания могло проникнуть в канавку и распределиться за кольцом.

Однако, зазор кольца по высоте не может быть в обратном смысле слишком большим, так как кольцо вследствие этого немного отклоняется от оси. В результате у кольца появляется склонность к вибрации, а также к повышенному скручиванию колец. Из-за этого поршневые кольца изнашиваются (чрезмерно сильная выпуклость рабочей поверхности) и появляется повышенный расход масла.

Рис. 1

Скручивание колец

Внутренние углы или внутренние фаски у поршневых колец вызывают в натянутом (установленном) состоянии их скручивание. В демонтированном, ненатянутом состоянии скручивание не происходит (рис. 1), и кольцо ровно лежит в кольцевой канавке. Если кольцо установлено, т.е. натянуто, оно отклоняется к более слабой стороне, туда, где из-за внутренней фаски или внутреннего угла отсутствует материал. Кольцо скручивается. В зависимости от положения фаски или угла на нижней или верхней кромке говорят о положительно или отрицательно скрученном поршневом кольце (рис. 3 и 4).

Скручивание кольца в условиях эксплуатации

У положительно и отрицательно скрученных колец скручивание эффективно, если на нихнедействуетникакоедавлениесгорания (рис. 5). Кактолькодавление сгорания начинает действовать в кольцевой канавке, поршневое кольцо прижимается к её нижней боковой поверхности, что ведёт за собой улучшенный контроль расхода масла (рис. 6).

Положительно скрученные цилиндрические и конические компрессионные поршневые кольца обладают в принципе хорошими маслосъёмными свойствами. При возникающем трении на стенке цилиндра при движении поршня вниз кольцо может, тем не менее, немного отделиться от нижней боковой поверхности канавки, так что масло всё же попадает в зазор и расходуется.

Отрицательно скрученное кольцо уплотняет в нижней боковой поверхности снаружи и в верхней боковой поверхности внутри. Вследствие этого проход в канавку маслу преграждён. Поэтому с помощью отрицательно скрученных колец можно оказывать положительное влияние на расход масла, особенно в режиме частичной нагрузки и при пониженном давлении в камере сгорания (режим принудительного холостого хода). У отрицательно скрученных конических компрессионных поршневых колец угол рабочей поверхности, составляющий примерно 2°, немного больше чем у обычных конических компрессионных поршневых колец. Это необходимо, так как из-за отрицательного скручивания угол частично исчезает.

Способность поршневого кольца прилегать к поверхности цилиндра по всему периметру

Под способностью поршневого кольца прилегать к поверхности цилиндра по всему периметру понимаютто, как хорошо прилегает кольцо к форме стенки цилиндра, чтобы достичь хорошей герметизации. Эта способность поршневого кольца зависитотэластичности кольца и, соответственно, кольцевой детали (маслосъёмные поршневые кольца, состоящие из двух частей) или стальных пластинок (маслосъёмные поршневые кольца, состоящие из нескольких частей), а также и от давления прижима кольца / кольцевой детали к стенке цилиндра. При этом способность поршневого кольца прилегать к поверхности цилиндра по всему периметру тем лучше, чем эластичнее кольцо / кольцевая деталь и чем больше давление прижима. Большая толщина и большое поперечное сечение кольца приводят к большой жёсткости и вызывают по причине более высокого веса также большие силы инерции. Поэтому по способности прилегать к поверхности цилиндра по всему периметру такие кольца уступают кольцам меньшей ширины и с меньшим поперечным сечением и, вместе с тем, с меньшими силами инерции.

Очень хорошей способностью прилегать к поверхности цилиндра по всему периметру обладают маслосъёмные поршневые кольца, состоящие из нескольких частей, так как они имеют очень гибкие кольцевые детали или стальные пластинки без того, однако, чтобы одновременно быть упругими,



Как уже описано этой брошюре, усилие прижима у маслосъёмных поршневых колец, состоящих из нескольких частей, появляется от пружины-расширителя. Кольцевая деталь или также стальные пластинки очень гибки и хорошо подгоняются.

Хорошая способность прилегать к поверхности цилиндра по всему периметру важна особенно тогда, когда по причине отклонения от формы появляются отклонения от круглости и неровности поверхности цилиндра. Они происходят из-за перекосов (термических и механических), а также из-за ошибок при обработке и монтаже. Смотри также главу 2.3.5 Геометрические характеристики цилиндра и круглость,

Движение поршневых колец

Вращение кольца

Чтобы иметь возможность отлично приработаться и уплотнять, поршневые кольца должны вращаться в кольцевых канавках. Вращение кольца возникает как из-за структуры хонингования (перекрёстная сетка шлифовочных штрихов), так и из-за перекоса поршня в его верхней и нижней мёртвых точках. При меньшихуглаххонингования кольца вращаются меньше, при большихже частота вращения кольца увеличивается. Кроме того, вращение кольца зависит от частоты вращения двигателя. От 5 до 15 оборотов в мин. - это реалистические значения частоты вращения, и это только для того, чтобы только получить представление об объёме вращения кольца. У двухтактных ДВС кольца защищены от перекручивания. Вследствие этого нет перекручивания колец и исключается попадание стыковых концов в газовые каналы при разжиме колец. Двухтактные ДВС находят в основном применение в двухколёсных транспортных средствах, садово-огородном инвентаре и им подобных. При этом нужно примириться и с возникающим из-за предотвращённого вращения кольца их неравномерным износом, возможным нагарообразованием в кольцевых канавках, а также с ограниченной продолжительностью срока действия. Помимо того, вид применения с самого начала предполагает меньший срок службы двигателя. К пробегу автомобилей с нормальным четырёхтактным ДВС, которые передвигаются по дороге, предъявляются гораздо более высокие требования.

Перекручивание стыковых концов кольца при монтаже на 120° по отношению друг к другу служит лишь для лучшего запуска нового двигателя. Позднее, уже в режиме работы возможно каждое мыслимое положение поршневых колец в пределах кольцевой канавки,если вращению ничего не препятствует с точки зрения конструкции (двухтактные ДВС).

Вращение вокруг оси

В идеальном случае кольца лежат на нижней боковой поверхности канавки. Это важно для механизма герметизации, так как кольца уплотняют не только на рабочих, но и на нижних боковых поверхностях. Нижняя боковая поверхность канавки уплотняет кольцо от газа или просачивания масла на обратную сторону кольца. Рабочая поверхность поршневого кольца уплотняет переднюю часть, прилегающую к стенке цилиндра (смотри также главу 1.6.6 Уплотнительная поверхность поршневого кольца).

Из-за движения поршня вверх и вниз и из-за изменения направления на кольца также оказывают действие центробежные силы, которые позволяют кольцам подниматься над нижней боковой поверхностью канавки. Масляная плёнка в канавке смягчает вызванное центробежными силами поднятие поршневых колец с ее нижней боковой поверхности. При этом в основном возникают проблемы, если кольцевые канавки из-за износа стали шире и, вследствие этого, появился слишком большой зазор кольца по высоте. Это приводит к тому, что кольцо поднимается с его опорной поверхности в поршне и вибрирует, начиная, прежде всего, со стыковых концов. Происходит потеря уплотняющего эффекта поршневого кольца и увеличивается расход масла. Это случается, прежде всего, при такте впуска, если при движении поршня вниз и при возникающем пониженном давлении в камере сгорания кольца отделяются со дна канавки и масло на обратной стороне кольца всасывается в камеру сгорания. При трёх остальных тактах давление из камеры сгорания прижимает кольца к нижней боковой поверхности,

Радиальное движение

Собственно, не кольца передвигаются в радиальном направлении туда-сюда, а поршень благодаря своему реверсивному движению в пределах внутреннего диаметра цилиндра соприкасается то с одной, то с другой стенкой цилиндра. Это происходит как в верхней, так и в нижней мёртвых точках поршня. Вследствие этого появляется радиальное движение кольца в пределах кольцевой канавки. Это ведёт не только к истиранию образующегося слоя масляного нагара (особенно у поршневых колец с поперечным сечением в форме трапеции), но и и в сочетании с перекрёстным шлифованием к вращению кольца.

Скручивание колец

Благодаря силе инерции,скручиванию колец и зазору по высоте, кольца совер шаюттакое движение, как изображено на рисунке. Как уже описано в главе 1.5.6 Выпуклая форма рабочей поверхности, поршневые кольца со временем становятся выпуклыми, если они уже с самого начала не были вы пуклыми.

Рис. 3

Рис. 4

Тема, интересующая многих автолюбителей, как установить зазор между поршневыми кольцами, а особенно интересует это тех, кто собирается проводить ремонтные работы самостоятельно. Каждый знает, что любой автовладелец (опытный, или нет), старается больше узнать о повреждениях, которые могут возникнуть во время эксплуатации авто, а также о мерах их предосторожности.

Приемы и техника


Какой должен быть зазор на поршневых кольцах? Мы рассмотрим различные особенности, и специфику темы, а также ознакомимся с основными приёмами и техниками, для ремонта этой детали.

Во-первых , самым первым шагом будет являться факт, который связан с осмотром поршней. Необходимо проверить и тщательно осмотреть поршень на наличие на поверхности трещин, или мелких механических повреждений. Если вы заметили даже небольшой дефект, то следует немедленно заменить поршень на новый. Чтобы избежать неприятной ситуации, или более крупной поломки.

Во-вторых , если у вас разобран двигатель, то следует также уделить внимание и поршням. К таким профилактическим мерам можно отнести очистку головки поршня от имеющегося нагара, очистка и обработка канавок которые находятся под поршневыми кольцами.

В-третьих , после того как поршень был очищен, следует обязательно осмотреть зазоры между канавками и кольцами. В решении данной проблемы как никогда лучше подойдёт таблица, в которой будут указаны номинальные зазоры поршневых колец.



Это:
  • Параметры верхнего компрессионного кольца должны быть 1-0.04-0,075 мм;
  • Компрессионное кольцо, которое находится внизу, должно быть размером 2-0,03-0,065 мм;
  • Маслосъемное кольцо с зазором в 3-0,02-0,055 мм.
Помните, что для каждого зазора характерны свои параметры и расстояние, самое главное - не перепутать их. Допустимый зазор должен быть равен 0,15 мм. В том случае, если на глаз тяжело точно определить расстояние между зазорами поршней, то можно воспользоваться специальным прибором - микрометром.

Прибор для измерения зазоров


Как правильно использовать микрометр, чтобы определить размер зазора на поршневых кольцах? Нужно померить диаметр поршня сразу в нескольких местах по его окружности. Потом измерить ширину канавок, используя при этом специальные щупы.

После измерений следует вычислить средний показатель значения зазоров. Если показатели отличаются друг от друга, то следует заменить поршень, если показатели одинаковы, то всё в порядке.

В-четвёртых , измерение зазоров в замках поршневых колец. Выполнять данное измерение можно как при помощи специальной оправы, так и при наличии простого предмета цилиндрической формы. Показатели и параметры зазора следует измерять при помощи специального щупа. Параметры зазора пригодного для эксплуатирования имеют следующие пропорции – 0,25-0,45 мм.



При этом может допускаться погрешность равная 1,0 мм, которая может возникнуть в результате износа детали. В том случае, если размер зазора выше нормы, то поршень необходимо поменять. Если же измеренный зазор меньше указанных параметров (0,25 мм.), то всё, что нужно это просто подточить торцы до нужного размера.

В-пятых , измерение зазора между поршнями и цилиндрами. Данное измерение основывается на установлении соответствия между уже измеренными диаметрами поршня и цилиндра. Здесь стандартные показатели равны от 0,025 до 0,045 мм, при возможном износе 0,15 мм.

Сколько водителей сталкивалось с вопросом — зазор в поршневых кольцах. А сколько водителей вообще не знакомо с таким понятием? Достаточно, для того, что бы эта статья заслуживала право на существование. Итак, давайте рассмотрим, что такое тепловой зазор в замке поршневых колец, и зачем он так необходим?

Отметим, что к поршневым деталям создаются очень большие требования по качеству. Это происходит потому что на них воздействуют инертные силы, силы действия газов и высокие температуры. Конструкция полного комплекта, его габариты и требуемые размеры, соответствие с выбранным материалом, точная реализация производственных технологий – все это необходимо для долговременной службы. Но здесь мы не учли зазор в поршневых кольцах. Рассмотрим, что же он собой представляет.

Что такое тепловой зазор? Каждая деталь двигателя автомобиля, которая подвергается воздействию высоких температур, обладает таким свойством как расширение. Многие это знают еще со школы. Так вот, при расширении детали изменяются ее параметры. Таким образом, изменение размеров детали может привести к ухудшению работы других элементов механизма, находящихся плотно друг к другу, или же к их повреждению.

В случае, когда из-за теплового расширения исчезает тепловое пространство, стыковые части прижимаются друг к другу, что чревато неприятными последствиями как для самых колец, так и для работы поршня.

Тепловой зазор в замке поршневых колец — очень важная конструктивная способность, обеспечивающая нормальную работу поршневых кругов. Главным условием для нормального функционирования, есть возможность его свободного вращения в канавке. Когда оно застрянет в канаве, оно не сможет обеспечить уплотнение, а так же отвод тепла.

Каким он должен быть?

Поршень имеет два вида колец: компрессионные (не пропускают сгоревшие газы) и маслосъемные (снимают излишки масла со стенок цилиндра). По своей конструкции они не сплошные, а имеют разрез, который позволяет ободу не заклинивать при нагреве. Также разрез способствует упругому прижатию к стенкам цилиндра. Очень важную роль в работе колец и цилиндра имеет наличие теплового пространства в замках. Допустимый его диапазон от 0.3 до 0.6 миллиметров. Не соблюдение диапазона может привести к отсутствию и большим повреждениям в цилиндре.


Гораздо лучше цениться косой срез. Так как давление на стенки происходит равномернее за счет то, что его края немного тоньше.

Полезно знать о промежутках в замках. Иногда механики пытаются сделать тепловое пространство в замках минимальным до 0.2 миллиметров. Это не редко приводит к тому, что появляются задиры колец и цилиндров. И это естественно, так как при нагревании детали пространство в замке становится меньше (или полностью отсутствует) и оно врезается в стенки цилиндра.

Самый простой замок с прямым разрезом имеет один недостаток – его концы имеют высокое давление на цилиндр, точнее на его стенки. Это приводит, прежде всего, к утечке масла и к преждевременному износу стенок.


Для того, чтобы подытожить вышесказанное, перечислим, какие же характеристики должны быть у поршневых колец и каков должен быть тепловой зазор поршневых колец:

  1. Регуляция температуры. Это одна из важнейших функций, поскольку большая масса тепла, которое поглощается поршнем в период сгорания, будет отводиться. Если такого отвода тепла не будет – поршень расплавится за считанные секунды.
  2. Давление. Основная функция состоит в том, чтобы уплотнять. И полная реализация этой характеристики возможна только при соответственном давлении. Когда давление появляется, оно влияет на поршневые круги, а они в свою очередь прижимается к стенкам цилиндра. Чтобы прижатие было равномерным – необходимо равномерное распределение и правильный зазор в поршневых кольцах.
  3. Надежность и подача масла — маслосъемные. У них есть две маслосъемных перемычки, которые отвечают за необходимое количество подачи масла в размере 1-2 мкм. Если масло подается правильно – тогда расход его не большой, так же как и расход горючего. При этом будет максимально соблюдаться правило износа и срок службы будет увеличиваться.


В итоге, хотелось бы пожелать каждому автомобилисту и водителю, независимо от того, у него дизель или бензин, проверять самостоятельно или обращаться к специалистам в таком вопросе. Особенно, если речь идет об автомобилях с большим пробегом и больше 5 лет постоянной езды.

Видео «Проверка зазора в замке поршневого кольца»

Посмотрев запись, вы узнаете, по какому принципу подбираются поршневые кольца.

В поршневом двигателе внутреннего сгорания, как заметно из названия, поршни встают наиболее главными в цепочке элементов и узлов, какие превращают энергию сгорания в механическую работу. Их значимость в бесперебойной службе мотора исключительно существенна, следовательно, именно с поршня следует начинать дефектовку двигателя скутера .

Причины износа поршня

Дефект 1: повреждения верхней части поршня

  • Чрезмерно большая температура сгорания
  • Недостаток охлаждения поршня сквозь масляные каналы в нём

Действия:

Обследуйте систему питания и при потребности отрегулируйте. Прочистите масляные каналы. При наличии сильных дефектов головки поршня смените поршни на новые.

Дефект 2: местные задиры на поршне

  • Дефицит смазки в паре поршень-цилиндр
  • Высокая температура плоскости цилиндра
  • Макродеформация цилиндра

Действия:

Смените повреждённые звена на новые. Проверьте смазку и правильность работы системы смазки (маслоподкачивающий насос, фильтр).

Дефект 3: радиальные трещины в камере сгорания

  • Действие слишком высокой температуры на днище поршня — последствие перегрузки мотора.

Действия:

Замените испорченные элементы на новые.

Дефект 4: разрушение юбки поршня в зоне отверстия под палец

  • Ошибочная установка стопорных колец или старые стопорные кольца, вследствие чего они вывалились, и поршневой палец торцевой стороной имел контакт с цилиндром.
  • Неисправность стопорных колец — как результат несоосности поршневого пальца и коленвала, искореженного шатуна, из-за конусности шеек коленчатого вала или огромного осевого смещения коленвала.

Действия:

Ликвидируйте дефекты цилиндра двигателя. Проконтролируйте соосность поршневого пальца и коленвала, устраните продольный зазор на коленчатом вале. При смене поршней удостоверьтесь, что стопорные кольца поставлены верно.

Дефект 5: задиры поршня с солидными дефектами в исподней части юбки поршня

  • Нехватка смазки
  • Мизерный зазор между поршнем или цилиндром
  • Искажение гильзы
  • Искажено днище поршня
  • Тотальный перегрев мотора
  • Неудовлетворительное круговращение охлаждающей жидкости (местный перегрев)

Действия:

Проверьте цилиндры и систему охлаждения. Смените испорченные составляющие, ликвидируете поломки.

Дефект 6: крушение перемычек промеж канавками колец

  • Употребление горючего с низким октановым числом
  • Высокое давление сгорания, давление газа под поршнем цилиндра — итог неточной регулировки впрыска или применения при запуске двигателя аэрозолей, повышающих степень сжатия

Действия:

Смените поршень и кольца. Проверьте регулирования.

Дефект 7: изнашивание канавок под поршневые кольца

Изъяны имеют все шансы быть и не столь ярко выраженными, вследствие этого в неизбежном порядке прочистите канавки под поршневые кольца и оцените их повреждение. Произвести это впору следующим приемом. Возьмите новый набор поршневых колец или калибр пригодной толщины. Кольцо вставляем в соответственную канавку и с подмогой щупа контролируем промежуток между поршнем и кольцом.

Как определить износ поршневой

Теперь проконтролируем зазоры в стыках колец, пристроив их в цилиндр. Кольца нужно скинуть с поршня и вставить внутрь цилиндра. Для получения верных показаний, кольцо обязано находиться в рабочей плоскости. Выставить точно их можно подтолкнув вглубь поршнем.