Одиннадцатилетний солнечный цикл. Солнечные циклы. Конспект лекций по учебной дисциплине «Информационные системы управления производственной компанией»

"Кислородный эффект"

Специалисты по радиобиологии утверждают, что биологическое действие ионизирующей радиации усиливается с повышением концентрации кислорода в организме. Этот принцип лег в основу открытого южно-африканскими врачами и используемого в настоящее время в разных странах метода ранней стимуляции умственных способностей детей. В ходе наблюдений было замечено, что у женщин, получавших во время беременности кислород, рождались дети, заметно опережавшие сверстников по уровню и темпам умственного развития, и наоборот, проявление гипоксии в этот период у женщин приводило к прямо противоположному результату.

Следует учитывать, что содержание кислорода в организме увеличивается с ростом атмосферного давления. Поэтому в дни, когда давление повышено, действие фоновой радиации усиливается.

Одиннадцатилетний солнечный цикл

Е. С. Виноградовым проведено очень любопытное исследование зависимости рождения выдающихся людей (гениев) от всплесков космической радиации, порождаемой солнечными вспышками и широкими атмосферными ливнями частиц. В годы "умеренного солнца" одаренных людей рождается на 10% больше, чем в годы "пассивного" и "активного" солнца.

Одиннадцатилетний солнечный цикл характеризуется сильными колебаниями относительного числа солнечных пятен, называемых "числами Вольфа". По среднегодичным числам Вольфа были выделены годы пассивного, умеренного и активного солнца за период с 1700 по 1976 г.

Затем были рассмотрены биографические данные (даты рождения): 1603 биологов; 1135 физиков; 1298 математиков и механиков; 3774 литераторов и 929 особо выдающихся людей всех специальностей. В результате была выявлена четкая зависимость рождения выдающихся людей от мощных хромосферных вспышек на Солнце, в результате которых выбрасываются струи вспышсчного ветра (потоки заряженных частиц, в основном протонов).

Время от времени на солнце происходят мощные хромосферные вспышки. При попадании Земли в струю вспышечного ветра ее геомагнитное поле сильно возмущается, а радиационный фон в результате возрастает на 100–1000%. Причем длится это от нескольких минут до часов. Это явление принято называть "магнитной бурей", на языке специалистов это – "солнечные протонные события". Происходят они преимущественно в годы "умеренного солнца". Именно они согласно "лучевой гипотезе" содействуют повышению числа рождаемости одаренных детей.

Особенность дня рождения

Нейронные микросети появляются в мозгу ребенка в самом конце его внутриутробного развития. Поэтому естественно ожидать, что наиболее сильное влияние на задатки умственных способностей человека солнечная активность окажет в день его рождения (либо близко к этому дню). С целью проверки этого предположения были сопоставлены дни рождения одаренных людей и основной индикатор солнечной активности – колебания земного магнетизма (значения индекса геомагнитной возмущенности известны на каждый день, начиная с 1884 г.).

В исследовании анализировались дни рождения: 705 физиков; 876 биологов и 264 особо выдающихся деятелей, рожденных после 1884 г. В результате было выявлено, что для формирования хороших умственных задатков человека важна благоприятная солнечная активность именно в день рождения (либо очень близко по времени к этому дню). Особый интерес вызывает то, что в данном исследовании была выявлена зависимость склонностей человека от характера солнечной активности в день его рождения.

Европе предрекают крупную войну

Эксперты всерьез задумываются о последствиях возможного распада Евросоюза. По словам экс-главы Еврогруппы Жана-Клода Юнкера происходящие в ЕС столкновения интересов крупных держав напоминают ситуацию в Старом Свете за год до начала Первой мировой войны.
Юнкер уверен, что угрозу новой войны в Европе не следует сбрасывать со счетов. «Для моего поколения единая валюта всегда означала политику мира. Сегодня я вижу, что слишком многие в Европе снова теряются в узконациональных идеях», – сообщил он.
Признаки разлада экс-главы Еврогруппы, в частности, видит в избирательных кампаниях в Греции и Италии. По признанию Юнкера, он был «шокирован» плакатами в Афинах, изображающими канцлера Меркель в нацистской форме. Последняя итальянская избирательная кампания, по его словам, также была чрезмерно враждебной к Германии и, следовательно, «антиевропейской», пишет газета «Взгляд». Юнкер прямо сравнил существующую ситуацию с 1913 годом, когда, несмотря на нарастающие противоречия, большинство европейцев твердо верили, что мир в Европе – это навсегда: «Есть удивительные параллели с 1913 годом в отношении беспечности. Многие в Европе еще тогда думали, что война никогда не может вспыхнуть вновь. Крупные державы на континенте были так тесно переплетены экономически, что считалось, они просто не могут себе позволить такую роскошь, как военный конфликт. Особенно были в этом уверены страны Северной и Западной Европы».

По мнению Юнкера, являющегося на данный момент премьером Люксембурга, чтобы избежать этих мрачных перспектив ныне, правительства должны неукоснительно придерживаться курса жесткой экономии и завершить цикл непопулярных реформ, призванных заставить Европу снова жить по средствам и на этой основе начать восстанавливать свою экономику. «Мы не можем бороться с дефицитом бюджета и повышать госрасходы. Мы не можем бороться с чрезмерным госдолгом, заимствуя новые средства. Если мы будем продолжать это делать, Европу ждет социальная революция», – заявил Юнкер.
http://3mv.ru/publ/evrope_predrekajut_krupnuju_vojnu/1-1-0-14958

НЕПРАВДА ЛИ ИНТЕРЕСНОЕ ЗАЯВЛЕНИЕ?
И ЭТО ЗАЯВЛЕНИЕ ИМЕЕТ ПОД СОБОЙ ОБОСНОВАНИЕ
ПОСМОТРИТЕ НА ГРУППЫ ПРЕДСТАВЛЕННЫЕ НИЖЕ И ВЫ ЗАМЕТИТЕ ЦИКЛИЧНОСТЬ В СОЫТИЯХ ПРОИЗОШЕДШИХ НА ПРОТЯЖЕНИИ НЕСКОЛЬКИХ ВЕКОВ:

1635-1659 гг. – Франко-испанская война.
1640-1668 гг. – Война Португалии за независимость.
1642-1646 гг. – Гражданская война в Англии.
1648 г. – Гражданская война в Англии.

1683-1684 гг. – Франко-испанская война.
1700-1721 гг. – Северная война России против Швеции
1701-1714 гг. – Война за испанской наследство между Францией, Австрией и Англией. 1718-1720 гг. – Англо-испанская война.

1739-1748 гг. – Англо-испанская война.
1740-1748 гг. – Война за Австрийское наследство.
1741-1743 гг. – Русско-шведская война, завершившаяся Абовским миром, по которому к России отходила часть Финляндии.
1744-1745 гг. – Вторая Силезская война Австрии и Пруссии на территории Польши.
1756-1763 гг. – Семилетняя война.

1788-1789 гг. – Русско-шведская война.
1789-1794 гг. – Великая французская революция.
1796-1797 гг. – Итальянский поход Наполеона Бонапарта.
1798-1801 гг. – Война Франции со II коалицией (Англия, Турция, Королевство Обеих Сицилий, Россия, Австрия, Португалия)
1799 г. – Взятие Ф. Ф. Ушаковым острова Корфу, Неаполя и Рима. Швейцарский и Итальянский походы А. В. Суворова
1799 г. – Переворот 18 брюмера, произведенный генералом Наполеоном Бонапартом. Переход власти во Франции к первому консулу Бонапарту 1800 г. – Разгром австрийских войск Наполеоном Бонапартом у Маренго. 1803-1805 гг. – Война Франции с III коалицией (Англия, Австрия, Россия) 1805 г. – Победа английского флота над франко-испанским при Трафальгаре. Гибель вице-адмирала Г. Нельсона.
1806-1807 гг. – Война Франции с IV коалицией (Англия, Пруссия, Россия) 1809 г. – Война Франции с V коалицией. Шёнбруннский мир. Потеря Австрией Иллирии, части Тироля и Западной Галиции. Восстание против власти французов в Германии.
1812 г. – Поход Наполеона в Россию. Отечественная война в России.
1812-1814 гг. – Война Франции с VI коалицией (Англия, Россия, Пруссия, Австрия) 1815 г. – «Сто дней» Наполеона.
1815 г. – Война Франции с VII коалицией. Сражение при Ватерлоо.

1853-1856 гг. – Крымская война: Турция, Англия, Франция, Сардиния против России.
1858 г. – Ликвидация Ост-Индской кампании, объявление Индии владением короны.
1859 г. – Австро-франко-сардинская война.
1864 г. – Война Австрии и Пруссии против Дании за Шлезвиг, Голштинию и Лауэнбург. 1866 г. – Австро-прусская («Тридцатидневная») война за гегемонию в Германии. Победа Пруссии.
1867 г. – Вторжение Д. Гарибальди во главе «красных рубашек» в Папскую область. 1867-1868 гг. – Война Англии против Эфиопии.
1870-1871 гг. – Франко-прусская война. Падение Второй Империи.
1877-1878 гг. – Русско-турецкая война.

1881 г. – Завоевание Туниса французами. Начало колониального продвижения Франции в Африке.
1882 г. – Оккупация Египта Англией.
1898 г. – Англо-французский колониальный конфликт в Африке.
1899-1902 гг. – Англо-бурская война.
1911-1912 гг. – Итало-турецкая война. Захват Италией Триполитании и Киренаики.
1912-1913 гг. – Балканский кризис.
1912-1913 гг. – Война Сербии, Болгарии и Греции против Турции. Потря Турцией Македонии, Фракии, Албании и Слоник.
1913 г. – Война Сербии, Греции, Румынии и Турции против Болгарии.
1914-1918 гг. – Первая мировая война. Гибель 9,5 млн. человек.
1917 г. – Февральская буржуазно-демократическая революция в России. Свержение монархии. Переход власти к Временному правительству.
1917 г. – Вступление США в войну на стороне стран Антанты.
1917 г. – Октябрьская революция в России. 1928 г. – Подписание 15 государствами (Франция, США, Германия, Великобритания, Япония и др.) в Париже пакта Келлога-Бриана об отказе от войны как орудия национальной политики.

1939 г. – Подписание Советско-Германского пакта о ненападении («пакт Молотова-Риббентропа»). Аннексия СССР Западной Украины и Западной Белоруссии.
1939-1940 гг. – Советско-финская война.
1940 г. – Вторжение германских войск в Данию, Голландию, Бельгию, Люксембург и Францию. Капитуляция Дании, Голландии, Бельгии, Норвегии и Франции. 1945 г. – Капитуляция Японии. Окончание Второй мировой войны

1991 г. – Распад СССР и образование Содружества Независимых Государств (СНГ), включившего 11 из 15 республик бывшего Советского Союза.
1999 г. Бомбардировка Сербии странами НАТО. Ввод в Косово миротворческих сил ООН. Разрыв Югославией дипломатических отношений со странами НАТО
2001 г. Америка начала боевые действия в Афганистане.
2003 г. Начало войны США в Ираке

ЦИКЛЫ
ИТАК: В ИСТОРИИ ЕВРОПЫ МЫ МОЖЕМ НАБЛЮДАТЬ ЦИКЛ В ~ 50 ЛЕТ - ПРИМЕРНО ЧЕРЕЗ ЭТОТ ПРОМЕЖУТОК НАЧИНАЛИСЬ ВООРУЖЁННЫЕ КОНФЛИКТЫ И ЭТО СОВПАДАЕТ С 54 - ЛЕТНИМИ ЦИКЛАМИ КОНДРАТЬЕВА И 60 - ЛЕТНИМИ ВЕДИЧИСКИМИ ЦИКЛАМИ В КОТОРЫЕ ТАКЖЕ УКЛАДЫВАЮТСЯ 11-ЛЕТНИЕ СОЛНЕЧНЫЕ ЦИКЛЫ. ТАКЖЕ СУЩЕСТВУЮТ И БОЛЕЕ ДЛИТЕЛЬНЫЕ ЦИКЛЫ В 2300 И 5125 ЛЕТ СУЩЕСТВОВАВШИЕ В КАЛЕНДАРЯХ МАЙЯ - И ЕЩЁ БОЛЛЕЕ ДЛИТЕЛЬНЫЕ СУЩЕСТВОВАВШИЕ В ДРЕВНЕЙ ИНДИИ. ЦИКЛЫ ИМЕЮТ ОГРОМНОЕ ЗНАЧЕНИЕ И ОКАЗЫВАЮТ ВЛИЯНИЕ НА МНОГИЕ СОБЫТИЯ В ЖИЗНИ ЛЮДЕЙ - ОНИ ОКАЗЫВАЮТ ВЛИЯНИЕ НА ПРАКТИЧЕСКИ ЛЮБЫЕ СОБЫТИЯ ПРОИСХОДЯЩИЕ НА ЗЕМЛЕ И ОБЩЕСТВЕ - РОЖДЕНИЕ И СМЕРТЬ, УРОЖАЙНОСТЬ СЕЛХОЗКУЛЬТУР, МИГРАЦИЮ НАРОДОВ И КАК СЛЕДСВИЕ ВСЕГО ЭТОГО - НАЧАЛО РЕВОЛЮЦИЙ И ВОЙН... И ВСЁ ЭТО В СОВОКУПНОСТИ ВЛИЯЕТ НА АКТИВНОСТЬ ФОНДОВОГО РЫНКА.

СОЛНЕЧНАЯ ЦИКЛИЧНОСТЬ
Солнечная цикличность - периодические изменения в солнечной активности . Наиболее известен и лучше всего изучен солнечный цикл с длительностью около 11 лет («цикл Швабе»). Иногда, в узком смысле, под солнечным циклом понимают именно 11-летний цикл солнечной активности.
Выделяют также удвоенный цикл Швабе длиной около 22 лет (так называемый «цикл Хейла»), имея в виду, что состояние глобального магнитного поля Солнца возвращается к исходному через два полных 11-летних цикла.
В поведении солнечной активности имеются также гораздо менее выраженные циклы большей длительности: например, «цикл Гляйсберга» с периодом около одного века, а также сверхдлинные циклы длиной в несколько тысяч лет.
11-летний цикл
Основная статья: Одиннадцатилетний цикл солнечной активности
11-летний цикл («цикл Швабе» или «цикл Швабе-Вольфа») является наиболее заметно выраженным циклом солнечной активности. Соответственно, утверждение о наличии 11-летней цикличности в солнечной активности иногда называют «законом Швабе-Вольфа».
На примерно десятилетнюю периодичность в увеличении и уменьшении количества солнечных пятен на Солнце впервые обратил внимание в первой половине XIX века немецкий астроном Г. Швабе , а затем - Р. Вольф . «Одиннадцатилетним» цикл называют условно: его длина за XVIII-XX века менялась от 7 до 17 лет, а в XX веке в среднем была ближе к 10,5 годам.
Этот цикл характеризуется довольно быстрым (в среднем примерно за 4 года) увеличением числа солнечных пятен , а также других проявлениями солнечной активности, и последующим, более медленным (около 7 лет), его уменьшением. В ходе цикла наблюдаются и другие периодические изменения, например - постепенное сдвижение зоны образования солнечных пятен к экватору («закон Шпёрера »).
Для объяснения подобной периодичности в возникновении пятен обычно используется теория солнечного динамо .
Хотя для определения уровня солнечной активности можно использовать различные индексы, чаще всего для этого применяют усреднённое за год число Вольфа . Определённые с помощью этого индекса 11-летние циклы условно нумеруются начиная с 1755 года. В 2008 году начался 24-й цикл солнечной активности .

Номер Минимум Максимум

1 1755 1761
2 1766 1769
3 1775 1778
4 1784 1787
5 1798 1804
6 1810 1816
7 1823 1830
8 1833 1837
9 1843 1848
10 1856 1860
11 1867 1870
12 1878 1883

13 1889 1893
14 1901 1905
15 1913 1917
16 1923 1928
17 1933 1937
18 1944 1947
19 1954 1957
20 1964 1968
21 1976 1979
22 1986 1989
23 1996 2000
24 2008

Другие наблюдаемые циклы
22-летний цикл
22-летний цикл («цикл Хейла ») является, в сущности, удвоенным циклом Швабе. Он был открыт после того, как в начале XX века была понята связь между солнечными пятнами и магнитными полями Солнца. При этом оказалось, что за один цикл пятенной активности общее магнитное поле Солнца меняет знак: если в минимуме одного цикла Швабе фоновые магнитные поля преимущественно положительны вблизи одного из полюсов Солнца и отрицательны - вблизи другого, то примерно через 11 лет картина меняется на противоположную. Каждые 11 лет меняется и характерное расположение магнитных полярностей в группах солнечных пятен. Таким образом, для того, чтобы общее магнитное поле Солнца вернулось к своему исходному состоянию, должно пройти два цикла Швабе, то есть около 22 лет.
Вековые циклы

Вековые циклы активности Солнца по радиоуглеродым данным .

Вековой цикл солнечной активности («цикл Гляйсберга ») имеет длину около 70-100 лет и проявляется в модуляциях 11-летних цикла. Последний максимум векового цикла наблюдался в середине XX века (вблизи 19-го 11-летнего цикла), последующий должен прийтись примерно на середину XXI века.
Наблюдается также двухвековой цикл («цикл Зюсса» или «цикл де Врие»), в качестве минимумов которого можно рассматривать происходящие примерно раз в 200 лет устойчивые снижения солнечной активности, длящиеся многие десятки лет (так называемые глобальные минимумы солнечной активности) - минимум Маундера (1645-1715), минимум Шпёрера (1450-1540), минимум Вольфа (1280-1340) и другие.
Тысячелетние циклы

Солнечный цикл Холлстатта с периодом 2 300 лет по данным радиоуглеродного анализа.

Самватсара (Самватсар) - 60-летний цикл в Ведическом календаре исчисления времени
В Ведической астрономии (Сиддханте) и Ведической астрологии (Джйотише) используются следующие грахи - «объекты» (а по сути, Силы Природы): 1) "Сурйа" - Солнце, 2) "Чандра" - Луна, пять планет - 3) "Мангала" - Марс, 4) "Буддха" - Меркурий, 5) "Гуру" - Юпитер, 6) "Шукра" - Венера, 7) "Шани" - Сатурн - и две математические точки: 8) Раху [восходящий («северный») лунный узел] и 9) Кету [нисходящий («южный») лунный узел].
Из пяти грах («планет») Гуру [Юпитер] и Шани [Сатурн] самые медленные, то есть их периоды вращения вокруг Солнца (и, соответственно, Земли) самые долгие. Цикл Гуру [Юпитер] длится 12 лет, а цикл Шани [Сатурн] идёт 30 лет. Кроме того, эти две грахи оказывают особое, долговременное влияние на всю Землю и на человека в часности.

«Наименьшее общее кратное» для 12 и 30 равно 60. То есть взаимносвязанное движение Юпитера и Сатурна образует 60-летний цикл, в начале которого обе планеты соединяются (между ними 0 градусов углового расстояния), затем угловое расстояние между ними растёт до максимума (между ними 180 градусов), затем уменьшается опять до их соединения, которое происходит через каждые 60 лет.
60 лет составляют одну Самватсару . Каждый год в Самватсаре имеет собственное название. Так человек, рождённый, например, в Самватсаре "Вайбхава", в своём 60-летнем возрасте вступит в следующую, вторую Вайбхава-Самватсару.
Существующие в природе циклы позволяют точно предсказывать множество событий: миграции птиц, приливы и отливы, движение планет и т.д. С помощью циклического анализа можно прогнозировать и изменения на финансовых рынках, хотя не всегда так же точно, как природные явление.
В поведении цен на ряд товаров обнаруживаются сезонные циклы. Как следствие сельскохозяйственной природы большинства товаров, эти циклы вполне объяснимы и понятны. Однако объяснить цикличность в поведении некоторых других финансовых инструментов бывает гораздо сложнее. В теориях цикличности финансовых рынков рассматриваются самые разнообразные причины такого поведения, начиная от погоды и пятен на солнце и кончая расположением планет и основами человеческой психологии. Мне представляется, что главная причина - в психологии.
Известно, что цена отражает совпадение ожиданий участников рынка. Эти ожидания постоянно изменяются, вызывая смещение линий спроса и предложения и заставляя цены колебаться между уровнями перекупленности и перепроданное™. Таким образом,колебания цен - это естественный процесс перемены ожиданий, закономерным следствием которого является цикличность.
Попытки использования циклической природы цен для повышения эффективности торговли привели к созданию множества технических индикаторов и инструментов. Среди них- индикаторы перекупленности/ перепроданности (напр., стохастический осциллятор и индекс относительной силы ), которые предназначены для определения экстремальных границ цикла.

На следующем рисунке показаны основные компоненты цикла.

ИНТЕРПРЕТАЦИЯ
Теме циклов и их анализа можно посвятить целую книгу. Поэтому здесь я лишь кратко охарактеризую некоторые наиболее известные циклы. Чтобы больше узнать о циклах и техническом анализе в целом, рекомендую обратиться к книге Дж. Мэрфи «Технический анализ фьючерсных рынков».
Согласитесь, что задним числом во всем можно найти цикличность. A для успешной торговли на основе циклического анализа необходим опираться только на циклы, имеющие устойчивый характер, и использовать их в сочетании с другими торговыми инструментами.
28-дневный цикл. В результате проведенных в 30-е годы исследований на рынке пшеницы был обнаружен 28-дневный цикл. Некоторые связывают это с влиянием лунного цикла. Так или иначе, но многие рынки, включая и рынок акций, действительно имеют 28-дневный цикл (т.е. 28 календарных дней, или приблизительно 20 торговых).
10,5-месячный фьючерсный цикл. Хотя цикличность каждого товарного рынка строго индивидуальна, в динамике индекса CRB (индекс исследования товарных рынков) обнаружен цикл длительностью 9-12 месяцев.
Эффект января. Рынок акций проявил мистическую закономерность заканчивать год на более высоком уровне, если в январе цены росли, и на более низком, если в январе они падали. Как говорится, «каков январь таков и весь год». В период между 1950 и 1993 годами эффект января подтверждался 38 раз из 44 - с точностью 86%.
4-летний цикл (волна Китчина) . В 1923 году Джозеф Китчин (Joseph Kitchin) обнаружил, что многие финансовые показатели Великобритании и Соединенных Штатов в период с 1890 по 1922 год подчинялись 40-месячному циклу. Позднее сильное влияние этого 4-летнего цикла было замечено и на рынке акций между 1868 и 1945 годами.
Хотя цикл называется «четырехлетним», его длина варьируется в пределах 40-53 месяцев.
Президентский цикл. Этот цикл связан с президентскими выборами в США происходящими каждые четыре года. Его объясняют так: после выборов рынок акций начинает падать в результате принятия вновь избранным президентом непопулярных мер по урегулированию экономики Затем, в середине президентского срока, рынок начинает расти в надежде на укрепление экономики ко времени следующих выборов.
9.2-летний цикл (волна Джаглара) . В 1860 году Клемент Джаглар (Clemant Juglar) обнаружил, что во многих сферах экономики наблюдается цикл длительностью приблизительно 9 лет. Последующие исследования доказали заметное влияние этого цикла в период с 1840 по 1940 год.
54-летний цикл (волна Кондратьева) . Названный в честь российского экономиста этот долгосрочный, 54летний цикл проявляется в динамике цен и экономических показателей. Поскольку длина цикла очень велика, его действие на рынке акций отмечено лишь трижды.
Для восходящей волны цикла характерны рост цен, развитие экономики и умеренный подъем рынка акций. Пологий участок кривой цикла (плато) - это стабильные цены, пик экономической активности и стремительный рост рынка акций. Нисходящая волна характеризуется падением цен, резким спадом на всех рынках и нередко крупным военным конфликтом.
На следующем графике (взятом из еженедельника The Media General Financial Weekly от 3 июня 1974 года) представлены волна Кондратьева и динамика оптовых цен в США.

В середине прошлого столетия астроном-любитель Г. Швабе и Р. Вольф впервые установили факт измене­ния числа солнечных пятен со временем, причем сред­ний период этого изменения составляет 11 лет. Об этом можно прочесть почти во всех популярных книжках о Солнце. Но мало кто даже из специалистов слышал о том, что еще в 1775 г. П. Горребов из Копенгагена дерзнул утверждать, что существует периодичность сол­нечных пятен. К сожалению, ряд его наблюдений был слишком мал, чтобы установить продолжительность это­го периода. Высокий научный авторитет противников точки зрения Горребова и артиллерийский обстрел Ко­пенгагена, уничтоживший все его материалы, сделали все для того, чтобы об этом утверждении забыли и не вспоминали даже тогда, когда оно было доказано дру­гими.

Конечно, все это нисколько не умаляет научных за­слуг Вольфа, который ввел индекс относительных чисел солнечных пятен и сумел по различным материалам на­блюдений астрономов-любителей и профессионалов вос­становить его с 1749 г. Более того, Вольф определил годы максимальных и минимальных чисел пятен еще со времени наблюдений Г. Галилея, т. е. с 1610. Это и позволило ему упрочить весьма несовершенную работу Швабе, располагавшего наблюдениями только за 17 лет, и впервые определить продолжительность среднего периода изменения числа солнечных пятен. Так по­явился знаменитый закон Швабе-Вольфа, согласно ко­торому изменения солнечной активности происходят пе­риодически, причем длина среднего периода составляет 11,1 года (рис. 12). Конечно, в то время говорилось только об относительном числе солнечных пятен. Но со временем этот вывод был подтвержден для всех изве­стных индексов солнечной активности. Многочисленные иные периоды активных солнечных явлений, особенно более короткие, которые были обнаружены исследова­телями Солнца за прошедшие 100 с лишним лет, неиз­менно опровергались, и только 11-летний период всегда оставался незыблемым.

Кривая среднегодичных цюрихских относительных чисел солнечных пятен…

Хотя изменения солнечной активности происходят периодически, эта периодичность особая. Дело в том, что интервалы времени между годами максимальных (или минимальных) чисел Вольфа довольно сильно различаются. Известно, что с 1749 г. до наших дней продолжительность их колебалась от 7 до 17 лет между годами максимумов и от 9 до 14 лет между годами минимумов относительного числа солнечных пятен. Поэто­му правильнее будет говорить не об 11-летнем периоде, а об 11-летнем цикле (т. е. периоде с возмущениями, или «скрытом» периоде) солнечной активности. Этот цикл имеет исключительно важное значение как для проникновения в сущность солнечной активности, так и для изучения солнечно-земных связей.

Но 11-летний цикл проявляется не только в измене­нии частоты солнечных новообразований, в частности, солнечных пятен. Его можно обнаружить также по изме­нению со временем широты групп пятен (рис. 13). Это обстоятельство привлекло внимание известного англий­ского исследователя Солнца Р. Кэррингтона еще в 1859 г. Он обнаружил, что в начале 11-летнего цикла пятна обычно появляются на высоких широтах, в сред­нем на расстоянии ±25-30° от экватора Солнца, тогда как в конце цикла предпочитают участки ближе к экватору, в среднем на широтах ±5-10°. Позже это гораздо убедительнее показал немецкий ученый Г. Шперер. Сначала этой особенности не придавали особого значения. Но потом положение резко измени­лось. Оказалось, что среднюю продолжительность 11-летнего цикла можно определить гораздо точнее по изменению широты групп солнечных пятен, чем по ва­риациям чисел Вольфа. Поэтому ныне закон Шперера, который свидетельствует об изменении широты групп пятен с ходом 11-летнего цикла, наряду с законом Шва­бе - Вольфа выступает как основной закон солнечной цикличности. Все дальнейшие работы в этом направле­нии только уточняли детали и по-разному объясняли эту вариацию. Но они, тем не менее, оставили неизмен­ной формулировку закона Шперера.

Диаграмма «бабочек» групп солнечных пятен…

Теперь мы обратимся к 11-летнему циклу солнечной активности, который в течение сотни с лишним лет со времени его открытия неизменно находился в центре внимания исследователей Солнца. За его кажущейся поразительной простотой на самом деле скрывается столь сложный и многогранный процесс, что мы всегда стоим перед опасностью потерять все или по крайней мере многое из того, что он перед нами уже раскрыл. Прав был один из наиболее известных специалистов по прогнозам солнечной активности немецкий астроном В. Глайсберг, когда в одной из своих популярных ста­тей сказал следующее: «Сколько раз исследователям солнечной активности казалось, что наконец-то им уда­лось окончательно установить все основные закономер­ности 11-летнего цикла. Но вот наступал новый цикл, и уже первые его шаги начисто отбрасывали всю их уверенность и заставляли заново пересматривать то, что они считали окончательно установленным». Может быть, в этих словах немного сгущены краски, но суть их, бе­зусловно, верна, особенно когда речь идет о прогнозе солнечной активности.

Как мы уже говорили, в определенные годы числа Вольфа имеют максимальную или минимальную вели­чину. Эти годы или еще более точно определенные мо­менты времени, например, кварталы или месяцы, назы­вают соответственно эпохами максимума и минимума 11-летнего цикла, или, более обще, эпохами экстрему­мов. Среднемесячные и среднеквартальные значения относительных чисел пятен, помимо в общем регуляр­ного, плавного изменения, характеризуются очень неправильными, сравнительно кратковременными флуктуациями (см. раздел 5 этой главы). Поэтому обычно эпохи экстремумов выделяют по так называе­мым сглаженным среднемесячным числам Вольфа, ко­торые представляют собой усредненные особым спосо­бом за 13 месяцев величины этого индекса, полученного из наблюдений, или по верхней и нижней огибающим кривых изменения среднеквартальных значений относи­тельных чисел пятен. Но иногда применение таких ме­тодов может привести к ложным результатам, особенно в низких циклах, т. е. циклах с небольшим максималь­ным числом Вольфа. Интервал времени от эпохи мини­мума до эпохи максимума 11-летнего цикла получил на­звание ветви роста, а от эпохи максимума до эпохи следующего минимума - ветви его спада (рис. 14).

Продолжительность 11-летнего цикла по эпохам ми­нимума определяется гораздо лучше, чем по эпохам максимума. Но и в этом случае возникает затруднение, которое заключается в том, что следующий цикл, как правило, начинается раньше, чем заканчивается преды­дущий. Теперь мы научились различать группы пятен нового и старого циклов по полярности их магнитного поля. Но такая возможность появилась немногим более 60 лет назад. Поэтому ради сохранения однородности методики приходится довольствоваться все-таки не ис­тинной длиной 11-летнего цикла, а неким ее «эрзацем», определяемым по эпохам минимальных чисел Вольфа. Вполне естественно, что в этих числах обычно объедине­ны группы пятен нового и старого 11-летних циклов. 11-летние циклы солнечных пятен отличаются не только различной длиной, но и различной их интенсив­ностью, т. е. разными значениями максимальных чисел Вольфа. Мы уже говорили о том, что регулярные дан­ные о среднемесячных относительных числах пятен цюрихского ряда имеются с 1749 г. Поэтому первым цюрихским 11-летним циклом считают цикл, начавший­ся в 1775 г. Предшествую­щий же ему цикл, содержа­щий неполные данные, види­мо, по этой причине полу­чил нулевой номер. Если за прошедшие со времени на­чала регулярного определе­ния чисел Вольфа 22 цикла (включая нулевой и еще не закончившийся, но уже прошедший свой максимум текущий) максимальное среднегодичное число Воль­фа в среднем равнялось 106, то в различных 11-летних циклах оно испытывало ко­лебание от 46 до 190. Особенно высоким был закончив­шийся в 1964 г. 19-й цикл. В его максимуме, который наступил в конце 1957 г., среднеквартальное число Вольфа равнялось 235. Второе место вслед за ним за­нимает нынешний, 21-й цикл, максимум которого про­шел в конце 1979 г. со среднеквартальным относитель­ным числом солнечных пятен 182. Самые низкие циклы солнечных пятен относятся к началу прошлого столе­тия. Один из них, 5-й по цюрихской нумерации, самый продолжительный из наблюдавшихся 11-летних цик­лов. Некоторые исследователи солнечной активности даже сомневаются в реальности его продолжительности и считают, что она полностью обязана «деятельности» на поприще науки Наполеона I. Дело в том, что все­цело поглощенный ведением победоносных войн фран­цузский император мобилизовал в армию почти всех астрономов обсерваторий Франции и покоренных им стран. Поэтому в те годы наблюдения Солнца велись столь редко (не более нескольких дней за месяц), что вряд ли можно доверять полученным тогда числам Вольфа. Трудно сказать, насколько основательны по­добные сомнения. Кстати, косвенные данные о солнеч­ной активности за это время не противоречат выводу о низком уровне относительных чисел солнечных пятен в начале XIX в. Однако просто так эти сомнения от­бросить тоже нельзя, поскольку они позволяют изба­виться от некоторых исключений, в особенности для отдельных 11-летних циклов. Любопытно, что второй самый низкий цикл, максимум которого относится к 1816 г., имел длину всего 12 лет, в отличие от сво­его предшественника.

Поскольку мы располагаем данными за двести с лишним лет только о числах Вольфа, все основные свойства 11-летних циклов солнечной активности выве­дены именно для этого индекса. С легкой руки масти­того первооткрывателя 11-летнего цикла более пятиде­сяти лет исследователи солнечной активности были за­няты главным образом поисками полного набора цик­лов продолжительностью от нескольких месяцев до сотни лет. Р. Вольф, убежденный в том, что солнечная цикличность - плод воздействия на Солнце планет Солнечной системы, сам положил начало этим поискам. Однако все эти работы дали гораздо больше для раз­вития математики, чем для изучения солнечной актив­ности. Наконец, уже в 40-х годах нынешнего столетия, один из «наследников» Вольфа по Цюриху М. Вальд­майер осмелился усомниться в правоте своего «научно­го прадеда» и перенес причину 11-летней цикличности внутрь самого Солнца. Именно с этого времени соб­ственно и началось настоящее исследование главных внутренних свойств 11-летнего цикла солнечных пятен.

Интенсивность 11-летнего цикла довольно тесно связана с его длительностью. Чем мощнее этот цикл, т. е. чем больше его максимальное относительное число пятен, тем меньше его продолжительность. К сожале­нию, эта особенность носит скорее чисто качественный характер. Она не позволяет достаточно надежно опре­делить значение одной из этих характеристик, если из­вестна вторая. Гораздо увереннее выглядят результаты изучения связи максимального числа Вольфа (точнее, его десятичного логарифма) с длиной ветви роста 11-летнего цикла, т. е. той частью кривой, которая характеризует нарастание чисел Вольфа от начала цикла до его максимума. Чем больше максимальное число солнечных пятен в этом цикле, тем короче ветвь его роста. Таким образом, форма циклической кривой 11-летнего цикла в значительной степени определяется его высотой. У высоких циклов она отличается большой асимметрией, причем длина ветви роста всегда короче длины ветви спада и равна 2-3 годам. У сравнительно слабых циклов эта кривая почти симметрична. И лишь самые слабые 11-летние циклы вновь показывают асимметрию, только противоположного типа: у них ветвь роста длиннее ветви спада.

В противоположность длине ветви роста, длина вет­ви спада 11-летнего цикла тем больше, чем выше его максимальное число Вольфа. Но если предыдущая связь очень тесная, то эта гораздо слабее. Вероятно, именно поэтому максимальное относительное число пятен только качественно определяет продолжитель­ность 11-летнего цикла. Вообще ветвь роста и ветвь спада основного цикла солнечной активности во многих отношениях ведут себя по-разному. Начать хотя бы с того, что если на ветви роста сумма среднегодичных чисел Вольфа почти не зависит от высоты цикла, то на ветви спада она определяется именно этой характери­стикой. Не удивительно, что столь неудачными были попытки представить кривую 11-летнего цикла матема­тическим выражением не с двумя, а с одним парамет­ром. На ветви роста многие связи оказываются гораз­до более четкими, чем на ветви спада. Создается впе­чатление, что именно особенности усиления солнечной активности в самом начале 11-летнего цикла диктуют его характер, тогда как его поведение после максимума в общем примерно одинаково во всех 11-летних циклах и различается только вследствие разной длины ветви спада. Впрочем, скоро мы увидим, что это первое впе­чатление нуждается в одном важном дополнении.

Свидетельства в пользу определяющего значения ветви роста 11-летнего цикла дали исследования цик­лических изменений суммарной площади солнечных пятен. Выяснилось, что по длине ветви роста можно достаточно надежно установить максимальное значение суммарной площади пятен. Ранее уже говорилось о том, что в этот индекс в неявной форме включено число групп пятен. Вполне естественно поэтому, что для него мы получаем, в сущности, те же выводы, что и для чи­сел Вольфа. Гораздо хуже известны закономерности 11-летнего цикла для частоты других явлений солнеч­ной активности, в частности, солнечных вспышек. Чисто качественно можно полагать, что для них они окажут­ся такими же, как для относительных чисел и суммар­ной площади солнечных пятен.

До сих пор мы имели дело с явлениями солнечной активности любой мощности. Но, как мы уже знаем, явления на Солнце очень сильно отличаются по своей интенсивности. Даже в обыденной жизни вряд ли кто поставит на одну доску легкое перистое облачко и большую черную тучу. А пока мы поступали именно так. И вот что любопытно. Стоит только разделить ак­тивные солнечные образования по их мощности, как мы приходим к довольно разноречивым результатам. Явле­ния слабой или средней интенсивности в общем дают ту же кривую 11-летнего цикла, что и числа Вольфа. Это относится не только к числу пятен, но и к числу факельных площадок, и к числу солнечных вспышек. Что же касается наиболее мощных активных образова­ний на Солнце, то они чаще всего встречаются не в саму эпоху максимума 11-летнего цикла, а через 1-2 года после нее, а иногда и до этой эпохи. Таким образом, для этих явлений циклическая кривая либо становится двухвершинной, либо сдвигает свой макси­мум на более поздние по отношению к числам Вольфа годы. Именно таким образом ведут себя самые боль­шие группы солнечных пятен, самые большие и яркие кальциевые флоккулы, протонные вспышки, всплески радиоизлучения IV типа. Аналогичную форму имеют кривые 11-летнего цикла для интенсивности зеленой корональной линии, потока радиоизлучения на метро­вых волнах, средней напряженности магнитных полей и средней продолжительности жизни групп солнечных пятен, т. е. индексов мощности явлений.

Наиболее своеобразно проявляется 11-летний цикл в законе Шперера для различных процессов солнечной активности. Как мы уже знаем, для групп солнечных пятен он выражается в изменении в среднем широты их появления от начала к концу цикла. При этом по мере развития цикла скорость такого «сползания» зоны солнечных пятен к экватору постепенно уменьшается и через 1-2 года после эпохи максимума чисел Вольфа оно вовсе прекращается, когда зона достигает «барье­ра» в интервале широт 7°,5-12°,5. Дальше происхо­дят только колебания зоны вокруг этой средней широ­ты. Создается впечатление, что 11-летний цикл «рабо­тает» только до этого времени, а затем постепенно как бы «рассасывается». Известно, что пятна охватывают довольно широкие зоны по обе стороны от экватора Солнца. Ширина этих зон тоже изменяется с течением 11-летнего цикла. Они самые узкие в начале цикла и самые широкие в эпоху его максимума. Именно этим объясняется то обстоятельство, что в наиболее мощных циклах, таких, как 18-й, 19-й и 21-й цюрихской нумера­ции, самые высокоширотные группы пятен наблюда­лись не в начале цикла, а в годы максимума. Группы пятен малых и средних размеров располагаются прак­тически по всей ширине «королевских зон», но предпо­читают концентрироваться к их центру, положение ко­торого все приближается к экватору Солнца по мере развития цикла. Наиболее крупные группы пятен «об­любовали» края этих зон и только изредка «снисходят» к внутренним их частям. Если судить только по распо­ложению этих групп, то можно подумать, что закон Шперера является лишь статистической фикцией. По­добным же образом ведут себя и солнечные вспышки разной мощности.

На ветви спада 11-летнего цикла средняя широта групп солнечных пятен, начиная с ±12°, не зависит от высоты цикла. В то же время в год максимума она определяется максимальным числом Вольфа в этом цикле. Более того, чем мощнее 11-летний цикл, тем на более высоких широтах появляются его первые группы пятен. В то же время широты групп в конце цикла, как мы уже видели, в сущности, в среднем одинаковы безотносительно к тому, какова его мощность.

Северное и южное полушария Солнца проявляют себя весьма по-разному в отношении развития в них 11-летних циклов. К сожалению, числа Вольфа опреде­лялись только для всего солнечного диска. Поэтому мы располагаем по данному вопросу довольно скромным материалом Гринвичской обсерватории о числе и пло­щадях групп пятен примерно за сто лет. Но все же гринвичские данные позволили выяснить, что роль се­верного и южного полушарий заметно изменяется от одного 11-летнего цикла к другому. Это выражается не только в том, что во многих циклах одно из полуша­рий определенно выступает в роли «дирижера», но и в различии формы циклической кривой этих полушарий в одном и том же 11-летнем цикле. Такие же свойства были обнаружены и по числу групп солнечных пятен и по их суммарным площадям. Более того, нередко эпохи максимума цикла в северном и южном полуша­риях Солнца отличаются на 1-2 года. Подробнее об этих различиях мы будем говорить при рассмотрении продолжительных циклов. А пока в качестве примера вспомним лишь, что в самом высоком 19-м цикле сол­нечная активность определенно преобладала в северном полушарии Солнца. При этом эпоха максимума в юж­ном полушарии наступила на два с лишним года рань­ше, чем в северном.

До сих пор мы рассматривали особенности развития 11-летнего цикла солнечной активности только для явле­ний, происходящих в «королевских зонах» Солнца. На более высоких широтах этот цикл, по-видимому, начи­нается раньше. В частности, давно уже было известно, что увеличение числа и площади протуберанцев в интер­вале широт ±30-60° происходит примерно за год до начала 11-летнего цикла пятен и низкоширотных про­туберанцев. Любопытно, что если в «королевских зо­нах» средняя широта появления протуберанцев с ходом цикла постепенно уменьшается, подобно тому, как это происходит с группами солнечных пятен, то более вы­сокоширотные протуберанцы имеют в начале цикла в среднем меньшую широту, чем в его конце. Нечто по­добное наблюдается и у корональных конденсаций. Не­которые исследователи считают, что для зеленой коро­нальной линии 11-летний цикл начинается примерно на 4 года раньше, чем для групп пятен. Но сейчас еще трудно сказать, насколько надежен этот вывод. Не ис­ключено, что на самом деле на Солнце постоянно со­храняется высокоширотная зона корональной активно­сти, которая с учетом данных, полученных для более низких широт, и приводит к такому кажущемуся ре­зультату.

Еще необычнее ведут себя слабые магнитные поля вблизи его полюсов. Они достигают минимальной ве­личины напряженности примерно в годы максимума 11-летнего цикла и в это же время полярность поля ме­няется на противоположную. Что же касается эпохи минимума, то в этот период напряженность полей до­вольно значительна и полярность их остается неизмен­ной. Любопытно, что изменение полярности поля вбли­зи северного и южного полюсов происходит не одновре­менно, а с разрывом в 1-2 года, т. е. все это время полярные области Солнца обладают одинаковой поляр­ностью магнитного поля.

Число полярных факелов изменяется параллельно с величиной напряженности поля вблизи полюсов Солн­ца в каждом его полушарии (между прочим, предваряя практически такое же изменение чисел Вольфа пример­но через 4 года). Поэтому, хотя мы располагаем дан­ными о слабых полярных магнитных полях менее чем за три 11-летних цикла, результаты наблюдений поляр­ных факельных площадок позволяют сделать вполне определенный вывод относительно их циклических из­менений. Таким образом, магнитные поля и факельные площадки в полярных областях Солнца отличаются тем, что их 11-летний цикл начинается в максимуме 11-летнего цикла солнечных пятен и достигает максиму­ма вблизи эпохи минимума пятен. Будущее покажет, насколько надежен этот результат. Но нам кажется, что если не вникать в детали, вряд ли последующие на­блюдения приведут к существенному его изменению. Любопытно, что полярные корональные дыры отлича­ются точно таким же характером 11-летней вариации.

Хотя солнечная постоянная, как уже говорилось, не испытывает ощутимых колебаний с ходом 11-летнего цикла, это отнюдь не означает, что подобным образом ведут себя и отдельные области спектра излучения Солнца. В этом читатель уже мог убедиться, когда рассматривались потоки радиоизлучения Солнца. Не­сколько слабее изменения интенсивности фиолетовых линий ионизованного кальция Н и К. Но и эти линии в эпоху максимума примерно на 40% ярче, чем в эпо­ху минимума 11-летнего цикла. Имеются данные, хотя и не совсем бесспорные, об изменении с ходом цикла глубины линий в видимой области солнечного спектра. Однако самые внушительные вариации излучения Солн­ца относятся к рентгеновскому и дальнему ультрафио­летовому диапазонам длин волн, возможность изучения которых дали искусственные спутники Земли и косми­ческие аппараты. Оказалось, что интенсивность рентге­новского излучения в интервалах длин волн 0-8 А, 8-20 А и 44-60 А от минимума к максимуму 11-летнего цикла возрастает в 500, 200 и 25 раз. Не менее ощути­мые изменения происходят и в спектральных областях 203-335 А и вблизи 1216 А (в 5,1 и 2 раза).

Как было обнаружено с помощью современных ма­тематических методов, существует так называемая тон­кая структура 11-летнего цикла солнечной активности. Она сводится к устойчивому «ядру» вокруг эпохи мак­симума, охватывающему примерно 6 лет, двум или трем вторичным максимумам и расщеплению цикла на две составляющие со средними периодами около 10 и 12 лет. Такая тонкая структура выявляется и в форме циклической кривой чисел Вольфа, и в «диаграмме ба­бочек». В частности, в самых высоких 11-летних цик­лах, кроме основной зоны солнечных пятен, имеется также высокоширотная зона, которая сохраняется толь­ко до эпохи максимума и смещается с ходом цикла не к экватору, а к полюсу. Кроме того, «диаграмма бабо­чек» для групп пятен представляет собой не единое целое, а как бы складывается из так называемых цепо­чек-импульсов. Суть этого процесса состоит в том, что, появляясь на сравнительно высокой широте, группа пятен (или несколько групп) за 14-16 месяцев смеща­ется к экватору Солнца. Такие цепочки-импульсы осо­бенно хорошо заметны на ветви роста и ветви спада 11-летнего цикла. Возможно, они связаны с флуктуациями солнечной активности.

Советский исследователь Солнца А. И. Оль устано­вил еще одно фундаментальное свойство 11-летнего цикла солнечной активности. Изучая связь между ин­дексом рекуррентной геомагнитной активности за по­следние четыре года цикла и максимальным числом Вольфа, он обнаружил, что она очень тесная, если чис­ло Вольфа относится к следующему 11-летнему циклу, и совсем слабая, если оно относится к тому же циклу, что и индекс геомагнитной активности. Отсюда следует, что 11-летний цикл солнечной активности зарождается «в недрах» старого. Рекуррентная геомагнитная актив­ность обусловлена корональными дырами, которые, как мы знаем, возникают, как правило, над униполярными областями фотосферного магнитного поля. Следователь­но, истинный 11-летний цикл начинается в середине вет­ви спада появлением и усилением не биполярных, а униполярных магнитных областей. Эта первая стадия развития заканчивается к началу того 11-летнего цикла, с которым мы привыкли иметь дело. В это время начинается его вторая стадия, когда развивают­ся биполярные магнитные области и все те явления солнечной активности, о которых мы уже говорили. Она длится до середины ветви спада привычного нам 11-летнего цикла, когда происходит зарождение нового цикла. Любопытно, что столь важная особенность 11-летнего цикла не была замечена непосредственно на Солнце, но ее удалось установить при изучении влия­ния солнечной активности на атмосферу Земли.

Одиннадцатилетний цикл (цикл Швабе , цикл Швабе-Вольфа ) - наиболее заметно выраженный цикл солнечной активности с длительностью около 11 лет.

Утверждение о наличии 11-летней цикличности в солнечной активности иногда называют «законом Швабе-Вольфа».

Характеристики

Цикл характеризуется довольно быстрым (в среднем примерно за 4 года) увеличением числа солнечных пятен , а также другими проявлениями солнечной магнитной активности, и последующим, более медленным (около 7 лет), его уменьшением. В ходе цикла наблюдаются и другие периодические изменения, например - постепенное сдвижение зоны образования солнечных пятен к экватору («закон Шпёрера »).

«Одиннадцатилетним» цикл называют условно: его длина в XVIII-XX веках менялась от 7 до 17 лет, а в XX веке в среднем была ближе к 10,5 годам.

Хотя для определения уровня солнечной активности можно использовать различные индексы, чаще всего для этого применяют усреднённое за год число Вольфа . Определённые с помощью этого индекса 11-летние циклы условно нумеруются начиная с 1755 года. В 2008 году [уточнить ] начался 24-й цикл солнечной активности .

Годы минимумов и максимумов последних 11-летних циклов
Номер Минимум Максимум Номер Минимум Максимум
1 1755 1761 13 1889 1893
2 1766 1769 14 1901 1905
3 1775 1778 15 1913 1917
4 1784 1787 16 1923 1928
5 1798 1804 17 1933 1937
6 1810 1816 18 1944 1947
7 1823 1830 19 1954 1957
8 1833 1837 20 1964 1968
9 1843 1848 21 1976 1979
10 1856 1860 22 1986 1989
11 1867 1870 1996 2000
12 1878 1883 2008

История открытия

Невооружённым глазом пятна на Солнце люди наблюдали по меньшей мере несколько тысячелетий. Первое известное письменное свидетельство об их наблюдении - комментарии китайского астронома Гань Дэ в звёздном каталоге - относится к 364 году до н. э. С 28 года до н. э. астрономы Китая вели регулярные записи наблюдений пятен в официальных хрониках.

В начале XVII века, с изобретением телескопа , астрономы начали систематические наблюдения и исследования солнечных пятен, однако 11-летняя цикличность ускользнула от их внимания. Частично это может объясняться тем, что солнечная активность была сравнительно низка даже в начале XVII века, а к его середине начался минимум Маундера (1645-1715) и количество солнечных пятен на Солнце на многие десятилетия снизилось.

На периодичность в поведении солнечных пятен астрономы впервые обратили внимание только в первой половине XIX века. Первым эту закономерность отметил в 1844 году немецкий астроном-любитель Г. Швабе . Опираясь на свои наблюдения Солнца в 1826-1843 годах, он опубликовал таблицу, содержащую ежегодные количества пятен за всё время наблюдений, и указал на 10-летний период в их появлении. . Статья Швабе осталась почти незамеченной. Тем не менее, она привлекла внимание другого немецкого астронома, Р. Вольфа , который с 1847 года начал собственные наблюдения пятен и ввёл индекс их количества - «цюрихское число», которое ныне часто называют числом Вольфа . Наконец, на результаты Швабе обратил внимание немецкий энциклопедист А. фон Гумбольдт , который в 1851 году опубликовал таблицу Швабе, продолженную последним до 1850 года, в своей энциклопедии «Космос».

Теория

Для объяснения подобной периодичности в возникновении пятен обычно используется теория солнечного динамо .

Современные немецкие учёные предположили, что одиннадцатилетний цикл связан с приливами Земли, Юпитера и Венеры: каждые 11 лет все три планеты располагаются в одном направлении и приливное воздействие их является причиной наблюдаемого эффекта .

Напишите отзыв о статье "Одиннадцатилетний цикл солнечной активности"

Примечания

Литература

  • Витинский Ю. И. , Копецкий М., Куклин Г. В. Статистика пятнообразовательной деятельности Солнца. - М .: Наука, 1986.
  • Прист Э. Р. Солнечная магнитогидродинамика. - М .: Мир, 1985.

См. также

Отрывок, характеризующий Одиннадцатилетний цикл солнечной активности

– Мы не давали. Дал наш Гость. Он был не отсюда. И, к сожалению, ока-зался «чёрным»...
– Но Вы ведь в и д и т е!!! Как же вы могли допустить такое?! Как Вы могли принять его в свой «священный круг»?..
– Он нашёл нас. Так же, как нашёл нас Караффа. Мы не отказываем тем, кто способен нас найти. Но обычно это никогда не бывали «опасные»... Мы сделали ошибку.
– А знаете ли Вы, какой страшной ценой платят за Вашу «ошибку» люди?!.. Знаешь ли ты, сколько жизней ушло в небытие в изуверских муках, и сколько ещё уйдёт?.. Отвечай, Север!
Меня взорвало – они называли это всего лишь ошибкой!!! Загадочный «подарок» Караффе был «ошибкой», сделавшей его почти неуязвимым! И беспомощным людям приходилось за это платить! Моему бедному мужу, и возможно, даже моей дорогой малышке, приходилось за это платить!.. А они считали это всего лишь ОШИБКОЙ???
– Прошу тебя, не злись Изидора. Этим сейчас не поможешь... Такое иногда случалось. Мы ведь не боги, мы люди... И мы тоже имеем право ошибаться. Я понимаю твою боль и твою горечь... Моя семья так же погибла из-за чьей-то ошибки. Даже более простой, чем эта. Просто на этот раз чей-то «подарок» попал в очень опасные руки. Мы попробуем как-то это исправить. Но пока не можем. Ты должна уйти. Ты не имеешь права погибнуть.
– О нет, ошибаешься Север! Я имею любое право, если оно поможет мне избавить Землю от этой гадюки! – возмущённо крикнула я.
– Не поможет. К сожалению, ничто тебе не поможет, Изидора. Уходи. Я помогу тебе вернуться домой... Ты уже прожила здесь свою Судьбу, ты можешь вернуться Домой.
– Где же есть мой Дом?.. – удивлённо спросила я.
– Это далеко... В созвездии Орион есть звезда, с чудесным именем Аста. Это и есть твой Дом, Изидора. Так же, как и мой.
Я потрясённо смотрела на него, не в состоянии поверить. Ни даже понять такую странную новость. Это не укладывалось в моей воспалённой голове ни в какую настоящую реальность и казалось, что я, как Караффа, понемногу схожу с ума... Но Север был реальным, и уж никак не казалось, чтобы он шутил. Поэтому, как-то собравшись, я уже намного спокойнее спросила:
– Как же получилось, что Караффа нашёл Вас? Разве же у него есть Дар?..
– Нет, Дара у него нет. Но у него есть Ум, который ему великолепно служит. Вот он и использовал его, чтобы нас найти. Он о нас читал в очень старой летописи, которую неизвестно, как и откуда достал. Но он знает много, верь мне. У него есть какой-то удивительный источник, из которого он черпает свои знания, но я не ведаю, откуда он, и где можно этот источник найти, чтобы обезопасить его.
– О, не беспокойся! Зато я об этом очень хорошо ведаю! Я знаю этот «источник»!.. Это его дивная библиотека, в которой старейшие рукописи хранятся в несметных количествах. Для них-то, думаю, и нужна Караффе его длинная Жизнь... – мне стало до смерти грустно и по-детски захотелось плакать... – Как же нам уничтожить его, Север?! Он не имеет права жить на земле! Он чудовище, которое унесёт миллионы жизней, если его не остановить! Что же нам делать?
– Тебе – ничего, Изидора. Ты просто должна уйти. Мы найдём способ избавиться от него. Нужно всего лишь время.
– А за это время будут гибнуть невинные люди! Нет, Север, я уйду только тогда, когда у меня не будет выбора. А пока он есть, я буду бороться. Даже если нет никакой надежды.
К Вам привезут мою дочь, береги её. Я не смогу её сберечь...
Его светящаяся фигура стала совершенно прозрачной. И начала исчезать.
– Я ещё вернусь, Изидора. – прошелестел ласковый голос.
– Прощай, Север... – так же тихо ответила я.
– Но, как же так?! – вдруг воскликнула Стелла. – Ты даже не спросила о планете, с которой пришла?!.. Неужели тебе было не интересно?! Как же так?..
Если честно, я тоже еле выдержала, чтобы не спросить Изидору о том же! Её сущность пришла извне, а она даже не поинтересовалась об этом!.. Но в какой-то мере я наверное её понимала, так как это было слишком страшное для неё время, и она смертельно боялась за тех, кого очень сильно любила, и кого всё ещё пыталась спасти. Ну, а Дом – его можно было найти и позже, когда не останется другого выбора, кроме, как только – уйти...
– Нет, милая, я не спросила не потому, что мне не было интересно. А потому, что тогда это было, не столь важно, как-то, что гибли чудесные люди. И гибли они в зверских муках, которые разрешал и поддерживал один человек. И он не имел права существовать на нашей земле. Это было самое важное. А всё остальное можно было оставить на потом.
Стелла покраснела, устыдившись своего всплеска и тихонечко прошептала:
– Ты прости, пожалуйста, Изидора...
А Изидора уже опять «ушла» в своё прошлое, продолжая свой удивительный рассказ...
Как только Север исчез, я тут же попыталась мысленно вызвать своего отца. Но он почему-то не отзывался. Это меня чуточку насторожило, но, не ожидая ничего плохого, я попробовала снова – ответа всё также не было...

Одиннадцатилетний цикл (цикл Швабе , цикл Швабе-Вольфа ) - наиболее заметно выраженный цикл солнечной активности с длительностью около 11 лет.

Утверждение о наличии 11-летней цикличности в солнечной активности иногда называют «законом Швабе-Вольфа».

Характеристики

Цикл характеризуется довольно быстрым (в среднем примерно за 4 года) увеличением числа солнечных пятен , а также другими проявлениями солнечной магнитной активности, и последующим, более медленным (около 7 лет), его уменьшением. В ходе цикла наблюдаются и другие периодические изменения, например - постепенное сдвижение зоны образования солнечных пятен к экватору («закон Шпёрера »).

«Одиннадцатилетним» цикл называют условно: его длина в XVIII-XX веках менялась от 7 до 17 лет, а в XX веке в среднем была ближе к 10,5 годам.

Хотя для определения уровня солнечной активности можно использовать различные индексы, чаще всего для этого применяют усреднённое за год число Вольфа . Определённые с помощью этого индекса 11-летние циклы условно нумеруются начиная с 1755 года. В 2008 году [уточнить ] начался 24-й цикл солнечной активности .

Годы минимумов и максимумов последних 11-летних циклов
Номер Минимум Максимум Номер Минимум Максимум
1 1755 1761 13 1889 1893
2 1766 1769 14 1901 1905
3 1775 1778 15 1913 1917
4 1784 1787 16 1923 1928
5 1798 1804 17 1933 1937
6 1810 1816 18 1944 1947
7 1823 1830 19 1954 1957
8 1833 1837 20 1964 1968
9 1843 1848 21 1976 1979
10 1856 1860 22 1986 1989
11 1867 1870 1996 2000
12 1878 1883 2008

История открытия

Невооружённым глазом пятна на Солнце люди наблюдали по меньшей мере несколько тысячелетий. Первое известное письменное свидетельство об их наблюдении - комментарии китайского астронома Гань Дэ в звёздном каталоге - относится к 364 году до н. э. С 28 года до н. э. астрономы Китая вели регулярные записи наблюдений пятен в официальных хрониках.

В начале XVII века, с изобретением телескопа , астрономы начали систематические наблюдения и исследования солнечных пятен, однако 11-летняя цикличность ускользнула от их внимания. Частично это может объясняться тем, что солнечная активность была сравнительно низка даже в начале XVII века, а к его середине начался минимум Маундера (1645-1715) и количество солнечных пятен на Солнце на многие десятилетия снизилось.

На периодичность в поведении солнечных пятен астрономы впервые обратили внимание только в первой половине XIX века. Первым эту закономерность отметил в 1844 году немецкий астроном-любитель Г. Швабе . Опираясь на свои наблюдения Солнца в 1826-1843 годах, он опубликовал таблицу, содержащую ежегодные количества пятен за всё время наблюдений, и указал на 10-летний период в их появлении. . Статья Швабе осталась почти незамеченной. Тем не менее, она привлекла внимание другого немецкого астронома, Р. Вольфа , который с 1847 года начал собственные наблюдения пятен и ввёл индекс их количества - «цюрихское число», которое ныне часто называют числом Вольфа . Наконец, на результаты Швабе обратил внимание немецкий энциклопедист А. фон Гумбольдт , который в 1851 году опубликовал таблицу Швабе, продолженную последним до 1850 года, в своей энциклопедии «Космос».

Теория

Для объяснения подобной периодичности в возникновении пятен обычно используется теория солнечного динамо .

Современные немецкие учёные предположили, что одиннадцатилетний цикл связан с приливами Земли, Юпитера и Венеры: каждые 11 лет все три планеты располагаются в одном направлении и приливное воздействие их является причиной наблюдаемого эффекта .

Напишите отзыв о статье "Одиннадцатилетний цикл солнечной активности"

Примечания

Литература

  • Витинский Ю. И. , Копецкий М., Куклин Г. В. Статистика пятнообразовательной деятельности Солнца. - М .: Наука, 1986.
  • Прист Э. Р. Солнечная магнитогидродинамика. - М .: Мир, 1985.

См. также

Отрывок, характеризующий Одиннадцатилетний цикл солнечной активности

Народ обратился к этим людям. Они приостановились и рассказывали, как подле самих их ядра попали в дом. Между тем другие снаряды, то с быстрым, мрачным свистом – ядра, то с приятным посвистыванием – гранаты, не переставали перелетать через головы народа; но ни один снаряд не падал близко, все переносило. Алпатыч садился в кибиточку. Хозяин стоял в воротах.
– Чего не видала! – крикнул он на кухарку, которая, с засученными рукавами, в красной юбке, раскачиваясь голыми локтями, подошла к углу послушать то, что рассказывали.
– Вот чуда то, – приговаривала она, но, услыхав голос хозяина, она вернулась, обдергивая подоткнутую юбку.
Опять, но очень близко этот раз, засвистело что то, как сверху вниз летящая птичка, блеснул огонь посередине улицы, выстрелило что то и застлало дымом улицу.
– Злодей, что ж ты это делаешь? – прокричал хозяин, подбегая к кухарке.
В то же мгновение с разных сторон жалобно завыли женщины, испуганно заплакал ребенок и молча столпился народ с бледными лицами около кухарки. Из этой толпы слышнее всех слышались стоны и приговоры кухарки:
– Ой о ох, голубчики мои! Голубчики мои белые! Не дайте умереть! Голубчики мои белые!..
Через пять минут никого не оставалось на улице. Кухарку с бедром, разбитым гранатным осколком, снесли в кухню. Алпатыч, его кучер, Ферапонтова жена с детьми, дворник сидели в подвале, прислушиваясь. Гул орудий, свист снарядов и жалостный стон кухарки, преобладавший над всеми звуками, не умолкали ни на мгновение. Хозяйка то укачивала и уговаривала ребенка, то жалостным шепотом спрашивала у всех входивших в подвал, где был ее хозяин, оставшийся на улице. Вошедший в подвал лавочник сказал ей, что хозяин пошел с народом в собор, где поднимали смоленскую чудотворную икону.
К сумеркам канонада стала стихать. Алпатыч вышел из подвала и остановился в дверях. Прежде ясное вечера нее небо все было застлано дымом. И сквозь этот дым странно светил молодой, высоко стоящий серп месяца. После замолкшего прежнего страшного гула орудий над городом казалась тишина, прерываемая только как бы распространенным по всему городу шелестом шагов, стонов, дальних криков и треска пожаров. Стоны кухарки теперь затихли. С двух сторон поднимались и расходились черные клубы дыма от пожаров. На улице не рядами, а как муравьи из разоренной кочки, в разных мундирах и в разных направлениях, проходили и пробегали солдаты. В глазах Алпатыча несколько из них забежали на двор Ферапонтова. Алпатыч вышел к воротам. Какой то полк, теснясь и спеша, запрудил улицу, идя назад.
– Сдают город, уезжайте, уезжайте, – сказал ему заметивший его фигуру офицер и тут же обратился с криком к солдатам:
– Я вам дам по дворам бегать! – крикнул он.
Алпатыч вернулся в избу и, кликнув кучера, велел ему выезжать. Вслед за Алпатычем и за кучером вышли и все домочадцы Ферапонтова. Увидав дым и даже огни пожаров, видневшиеся теперь в начинавшихся сумерках, бабы, до тех пор молчавшие, вдруг заголосили, глядя на пожары. Как бы вторя им, послышались такие же плачи на других концах улицы. Алпатыч с кучером трясущимися руками расправлял запутавшиеся вожжи и постромки лошадей под навесом.
Когда Алпатыч выезжал из ворот, он увидал, как в отпертой лавке Ферапонтова человек десять солдат с громким говором насыпали мешки и ранцы пшеничной мукой и подсолнухами. В то же время, возвращаясь с улицы в лавку, вошел Ферапонтов. Увидав солдат, он хотел крикнуть что то, но вдруг остановился и, схватившись за волоса, захохотал рыдающим хохотом.
– Тащи всё, ребята! Не доставайся дьяволам! – закричал он, сам хватая мешки и выкидывая их на улицу. Некоторые солдаты, испугавшись, выбежали, некоторые продолжали насыпать. Увидав Алпатыча, Ферапонтов обратился к нему.
– Решилась! Расея! – крикнул он. – Алпатыч! решилась! Сам запалю. Решилась… – Ферапонтов побежал на двор.
По улице, запружая ее всю, непрерывно шли солдаты, так что Алпатыч не мог проехать и должен был дожидаться. Хозяйка Ферапонтова с детьми сидела также на телеге, ожидая того, чтобы можно было выехать.
Была уже совсем ночь. На небе были звезды и светился изредка застилаемый дымом молодой месяц. На спуске к Днепру повозки Алпатыча и хозяйки, медленно двигавшиеся в рядах солдат и других экипажей, должны были остановиться. Недалеко от перекрестка, у которого остановились повозки, в переулке, горели дом и лавки. Пожар уже догорал. Пламя то замирало и терялось в черном дыме, то вдруг вспыхивало ярко, до странности отчетливо освещая лица столпившихся людей, стоявших на перекрестке. Перед пожаром мелькали черные фигуры людей, и из за неумолкаемого треска огня слышались говор и крики. Алпатыч, слезший с повозки, видя, что повозку его еще не скоро пропустят, повернулся в переулок посмотреть пожар. Солдаты шныряли беспрестанно взад и вперед мимо пожара, и Алпатыч видел, как два солдата и с ними какой то человек во фризовой шинели тащили из пожара через улицу на соседний двор горевшие бревна; другие несли охапки сена.