Классификация и области применения датчиков. Магнитоуправляемые датчики на микросхемах Новые магнитоуправляемые компоненты

Магнитноуправляемые интегральные логические микросхемы К1116 представляют собой особый класс полупроводниковых приборов, тип действия которых основан на изменении сигнала на их выходе при воздействии внешнего магнитного поля. Другими словами, микросхемы выполняют функцию ключа, управляемого магнитным полем. Магнитоуправляемые микросхемы используются в качестве чувствительных элементов в магнитных датчиках тока и напряжения, скорости и направления вращения, угла поворота и положения, расхода газа и жидкости и др. Микросхемы также используются в бесконтактных вентильных электродвигателях, в устройствах аварийной и охранной сигнализации, системах электронного зажигания в двигателях внутреннего сгорания, электронных клавиатурах и т.д. Микросхемы содержат на кристалле преобразователь магнитного поля и усилитель сигнала. В качестве преобразователя используется 4-электродный элемент Холла. К1116КП1 - униполярные датчики, выполненные в 5-выводном корпусе SIP 13х7х2 мм. Уровень напряжения на выходе датчиков зависит от значения индукции магнитного поля одной полярности. При отсутствии магнитного поля выход датчиков соответствует логической 1. При превышении напряжения уровня напряжения срабатывания происходит переключение в состояние логического нуля. Повышенная помехоустойчивость микросхем гарантирована наличием гистерезиса (с индукцией 3..9 мТл) на характеристике переключения. Микросхемы имеют два синфазных выхода с открытым коллектором и стробирующий вход. При подаче на этот вход стробирующего импульса с уровнем 0 уровень выходного напряжения не будет зависеть от воздействия внешнего магнитного поля. Если вход не используется, его необходимо подключить к положительному проводу питания. Назначение выводов: 1, 2 - выход 1, 2 3 - строб.вход 4 - питание (+U) 5 - общий

В основу классификации датчиков положены характерные признаки, по которым можно выделить следующие группы.

1. По измеряемой физической величине . Это самая обширная группа датчиков, т.к. в технических измерениях, в том числе при контроле и диагностировании, измерению подвергаются около 200 физических величин. Пример: датчики температуры, давления, перемещения, скорости, ускорения, усилия, расхода, уровня, вибрации и т.д. и т.п.

2. По принципу действия , на котором основано функционирование датчика:

а) термопреобразователи: термометры сопротивления (изменение сопротивления металлов Pt, Ni, Cu), термопары (термо ЭДС), полупроводниковые терморезисторы, датчики инфракрасного излучения и т.д.;

б) пьезоэлектрические преобразователи (вибраций, сил, давлений);

в) тензопреобразователи для измерений деформаций и механических напряжений;

г) фотоэлектрические (оптические) датчики (на фотодиодах, светодиодах, лазерах);

д) индуктивные, индукционные, датчики Холла;

е) механические датчики (индикаторные головки);

ж) электромеханические (тахометры, расходомеры);

з) потенциометрические (датчики угла поворота и перемещения);

и) емкостные (датчики перемещения, уровня, влажности, шероховатости);

к) контактные (тактильные): электроконтактные, виброконтактные - датчики положения, позиции на объекте измерения, контроля и диагностирования.

3. По выходному сигналу : аналоговые, цифровые (кодовые), импульсные.

4. По технологии изготовления :

а) традиционная технология: электромеханические датчики, электрические, электровакуумные и т.д.;

б) современная полупроводниковая микроэлектронная технология. Например, объемные кристаллы и пленочные, используемые в виде микросхем, которые напрямую стыкуются с цифровыми микросхемами для дальнейшей обработки сигнала - датчик Холла , гидисторы, термисторы.

В качестве примера применения современных датчиков рассмотрим подробнее измерительные и контрольные устройства, реализованные на базе датчиков Холла и датчиков давления.

Датчики Холла

Современная реализация датчиков Холла осуществляется на базе магнитоуправляемых интегральных логических микросхем серии К1116. Эти микросхемы представляют собой особый класс полупроводниковых приборов, принцип действия которых основан на изменении сигнала на их выходе при воздействии внешнего магнитного поля. Иначе говоря, эти микросхемы выполняют функции электронных ключей, управляемых магнитным полем.

Перспективность использования датчиков Холла в интегральном исполнении на основе магнитоуправляемых микросхем подтверждается тем, что они находят широкое применение в качестве чувствительных элементов в функционально-ориентированных магнитных датчиках электрического тока и напряжения, скорости и направления вращения, угла поворота и конечного положения исполнительных устройств, расхода жидкости и газа в ТП и т.д. Их также используют в бесконтактных (вентильных) электродвигателях, устройствах аварийной и охранной сигнализации, бесконтактных системах электронного зажигания горючей смеси в двигателях внутреннего сгорания, системах автостопа в бытовой радиоаппаратуре, в металлоискателях и дефектоскопах, в электронных предохранителях, в клавиатуре промышленных компьютеров и пультов управления ТОУ и т.д. и т.п.

Основные преимущества магнитоуправляемых микросхем (МУМС) по сравнению с другими преобразователями физических (неэлектрических) величин - простота обеспечения практически идеальных механической, электрической, тепловой и других видов развязки измерительных и управляющих цепей от объектов контроля, а также большой динамический диапазон и возможность непосредственного сопряжения со стандартными цифровыми микросхемами.

Микросхемы серии К1116 представляют собой устройства малой степени интеграции, содержащие в одном кремниевом кристалле преобразователь магнитного поля и электронное устройство усиления и обработки сигнала. Преобразователем магнитного поля служит интегральный 4-электродный элемент Холла, принцип действия которого основан на возникновении на двух продольных электродах ЭДС, прямо пропорциональной произведению напряженности магнитного поля на ток, протекающий через поперечные электроды. Микросхемы изготовляют по эпипланарной технологии и оформляют в 3–5 – выводном пластмассовом корпусе с жесткими плоскими выводами. Внешний вид и чертежи корпуса показаны на рис. 4.2. Штрихпунктирным квадратом на чертежах обозначено размещение зоны чувствительности элемента Холла (например, размеры зоны у микросхем К1116КП9 и К1116КП10 - 1,5´1,5 мм). Функциональная схема типовой микросхемы, позволяющая реализовать чувствительный элемент датчика Холла, представлена на рис. 4.3. По реакции на воздействие внешнего магнитного поля микросхемы подразделяют на униполярные, уровень напряжения на выходе которых зависит от значения индукции магнитного поля одной полярности, и биполярные, уровень выходного напряжения которых зависит как от значения индукции, так и от знака (полярности) воздействующего магнитного поля.

Рис. 4.2. Внешний вид корпусов микросхем серии К1116

Рис. 4.3. Функциональная схема типовой микросхемы

Униполярные микросхемы К1116КП1, К1116КП3, К1116КП9, К1116КП10 имеют прямой выход, сигнал на котором в отсутствие магнитного поля соответствует уровню логической «1» (рис. 4.4, а). При повышении индукции внешнего магнитного поля до значения в>в сраб происходит переключение микросхемы и уровень сигнала на ее выходе скачком изменяется до логического «0». Униполярная микросхема К1116КП2 имеет инверсный выход, на котором уровень логической «1» появляется при воздействии магнитного поля с индукцией В>В сраб (рис. 4.4, б). Характеристика переключения для биполярных микросхем К1116КП4, К1116КП7 и К1116КП8 представлена на рис. 4.4, в.

С повышением температуры униполярных микросхем происходит увеличение значения индукции срабатывания/отпускания (рис. 4.4, г). С повышением температуры биполярных микросхем индукция срабатывания отпускания уменьшается. Температурный коэффициент изменения индукции срабатывания и отпускания лежит в пределах от 0,01 до 0,05 мТл/°С в зависимости от типа микросхемы.

Повышенная помехоустойчивость микросхем обеспечена наличием гистерезиса (с индукцией 3...9 мТл) на характеристике переключения.

Микросхемы серии К1116 рассчитаны на сопряжение с цифровыми интегральными микросхемами видов РТЛ, ДТЛ, ТТЛ, ЭСЛ, И 2 Л и структуры КМОП. Одна из возможных схем сопряжения показана на рис. 4.5.

г )

Рис.4.4. Характеристики микросхем серии К1116


Рис.4.5. Схема сопряжения микросхем серии К1116 с ТТЛ – микросхемами

Микросхемы серии К1116 отличаются высокой надежностью (интенсивность отказов – не более 3×10 -7 ч –1), продолжительным сроком службы (50000 ч) и невысокой стоимостью.

МУМС служат основным элементом магнитных датчиков (датчиков Холла), используемых в устройствах самого разнообразного назначения. В настоящее время наиболее широкое распространение получили универсальные магнитные датчики положения (позиции) и перемещения (рис.4.6, а, б). Конструкция датчиков может быть различной, но они всегда содержат преобразователь магнитного поля (в нашем случае - магнитоуправляемую микросхему на основе элемента Холла) и магнитную систему , разомкнутую или замкнутую. Магнитная система может быть составной частью датчика, а может включать в себя и те или иные элементы контролируемого объекта.

Простейший датчик состоит из МУМС и постоянного магнита, укрепленного на подвижном звене контролируемого объекта. При сближении магнита и МУМС на некоторое расстояние индукция магнитного поля становится достаточной для срабатывания микросхемы. Удаление магнита приводит к ее переключению в исходное состояние. При разработке датчиков учитывают известные закономерности действия магнитного поля, характеристики постоянных магнитов, а также влияние элементов конструкции на параметры датчиков.

На рис. 4.6, а изображена конструкция клавишного модуля с беспружинным возвратом в исходное состояние. В исходном состоянии на выходе МУМС уровень либо «0», либо «1». При нажатии на клавишу подвижный магнит опускается, изменяется взаимное расположение полюсов магнитов и уменьшается значение магнитной индукции в зоне микросхемы. В крайнем нижнем положении магниты обращены один к другому одноименными полюсами. Магнитный поток, воздействующий на микросхему, становится минимальным и она переключается. При отпускании клавиши взаимодействие магнитных полей магнитов возвращает ее в исходное положение и фиксирует в нем. МУМС переключается в первоначальное состояние.

Бесконтактная клавиатура с применением МУМС обладает высокой надежностью, отсутствием дребезга контактов и высокой помехоустойчивостью.

Вариант конструкции датчика перемещения показан на рис. 4.6, б. При перемещении в рабочем зазоре датчика шторки из ферромагнитного материала, имеющей сквозные окна (отверстия), на выходе МУМС происходит смена уровней напряжения. Действие шторки основано на экранировании магнитного потока ферромагнитным материалом. Шторка может быть выполнена в виде стакана, пластины, диска, крыльчатки и т. п. Подобный датчик с вращающейся цилиндрической шторкой использован в бесконтактном прерывателе электронной системы зажигания двигателя автомобиля. Такой прерыватель имеет высокую надежность работы и долговечность. Датчик Холла с вращающейся крыльчаткой используется в тахометрических (турбинных) расходомерах технологических жидкостей с повышенными эксплуатационными свойствами.

Если на шторке расположить несколько рядов окон в порядке, соответствующем коду Грея, то с использованием соответствующего числа МУМС и магнитов можно реализовать 5-8-разрядный кодовый датчик линейного перемещения или датчик «частота вращения - код» . В отличие от фотоэлектрического датчика магнитный не требует сложной оптической системы, более надежен и экономичен.

Широкое применение получило использование МУМС в качестве датчиков положения ротора вентильных (бесколлекторных) электродвигателей. Устройство такого электродвигателя схематически представлено на рис. 4.7. Чаще всего датчик положения ротора представляет собой неподвижное кольцо из немагнитного материала, на котором равномерно по окружности установлены 2, 3 или 4 МУМС (в зависимости от числа секций обмотки возбуждения). Микросхемы попадают в зазоры вращающейся вместе с валом системы управляющих магнитов. Ротором электродвигателя служит многополюсный постоянный магнит, а многосекционная обмотка возбуждения играет роль статора. Вращающее магнитное поле обмоток возбуждения формируется бесконтактным коммутатором по командам датчика положения ротора. При этом одна микросхема управляет, как правило, одной из секций обмотки возбуждения.

Использование МУМС в датчике положения ротора обеспечивает возможность управления частотой вращения вентильных электродвигателей в очень широких пределах - от нескольких оборотов в минуту до 60 000. Такие двигатели весьма перспективны для прямого исполнительного привода электромеханических устройств автоматики ТОУ и компьютерной техники, так как обладают большим сроком службы (до 10000 ч), компактны и бесшумны; их КПД достигает 70 %.

С применением МУМС созданы бесконтактные электронные реле . Магнитная система и обмотка такого реле принципиально такие же, как и у обычного электромагнитного, но якорь и связанные с ним контакты отсутствуют. Их заменяют микросхема, установленная в зазоре магнитопровода, и транзисторный усилитель тока. Исполнительный узел реле, выполненный на мощных транзисторах или тиристорах, может быть рассчитан на большой коммутируемый ток (или напряжение). При этом размеры реле остаются относительно небольшими.

Рис.4.7. Устройство датчика положения ротора электродвигателя

Рис.4.8. Применение датчика Холла в схеме защиты от токовых перегрузок

Аналогичные устройства могут быть использованы для электронной защиты цепей питания аппаратуры от перегрузки и замыканий . При необходимости защиты сильноточных цепей (до 1000 А) может быть использовано устройство, конструкция которого изображена на рис. 4.8. Вокруг провода контролируемой цепи располагают кольцевой концентратор, выполненный из трансформаторной стали. В зазор концентратора помещают МУМС. Превышение тока через контролируемый проводник сверх установленного порога приводит к переключению микросхемы и срабатыванию исполнительного устройства. Достоинствами таких релейных устройств являются полная развязка управляющих и исполнительных цепей, высокое быстродействие (десятые доли микросекунды) и искробезопасность.

Если на краю дверцы блока электроавтоматики ТОУ закрепить магнит, а в соответствующем месте на корпусе - МУМС, то можно реализовать защитное устройство, предотвращающее несанкционированное открывание блока. Такое же устройство, смонтированное на микроволновой печи, не позволит включить ее при открытой дверце. Легко представить себе конструкции поплавковых датчиков уровня технологической жидкости с использованием МУМС.

Следует отметить, что МУМС могут быть использованы во многих случаях, в которых применяют герконы. Однако по сравнению с герконами магнитоуправляемые микросхемы обладают меньшими размерами, большей механической прочностью и устойчивостью, отсутствием дребезга контактов при переключении, высокими быстродействием (в 10 раз выше) и надежностью.

Интересные возможности предоставляет применение МУМС в дефектоскопии . Как пример, можно привести конструкцию головки для искателя оборванных проволок в канате. Эти приборы очень нужны горнякам, строителям, эксплуатационникам канатных дорог, лифтов, цеховых кранов, подъемников и т.д.

Магнитоуправляемые логические микросхемы, используются в устройствах самого разнообразного назначения. В настоящее время наиболее широкое распространение получили универсальные магнитные датчики положения и перемещения. Конструкция датчиков может быть различной, но они всегда содержат преобразователь магнитного поля и магнитную систему, разомкнутую или замкнутую. Магнитная система может быть составной частью датчика, а может включать в себя и те или иные элементы контролируемого объекта. Простейший датчик состоит из магнитоуправляемой микросхемы (МУМС) и постоянного магнита, укрепленного на подвижном звене контролируемого объекта. При сближении магнита и МУМС на некоторое расстояние индукция магнитного поля становится достаточной для срабатывания микросхемы. Удаление магнита приводит к ее переключению в исходное состояние.

При разработке датчиков учитывают известные закономерности действия магнитного поля, характеристики постоянных магнитов, а также влияние элементов конструкции на параметры датчиков. Магнитные датчики применяют в бесконтактной клавиатуре, вентильных электродвигателях, автоматических устройствах защиты сети, электронных реле и предохранителях, измерителях частоты и направления вращения вала, преобразователях угла поворота, системах промышленной, автомобильной и бытовой автоматики, автостопах магнитофонов и электропроигрывателей и т. д. Подобные датчики с вращающейся цилиндрической шторкой используются в бесконтактных прерывателях электронной системы зажигания автомобилей. Такой прерыватель имеет высокую надежность работы и долговечность.

Если на шторке расположить несколько рядов окон в порядке, соответствующему коду Грея, то с использованием соответствующего числа МУМС и магнитов можно реализовать 5-8 разрядный датчик линейного перемещения или датчика «частота вращения-код». В отличие от светового датчика магнитный не требует сложной оптической системы, более надежен и экономичен.

На базе магнитного датчика могут быть выполнены интересные электромеханические замковые устройства. На цилиндрической личине замка укрепляют магнит, так чтобы при ее повороте ключом магнит приблизился к укрепленной рядом МУМС. Электронный узел, воспринимающий сигнал от микросхемы, выполняет необходимые переключения. Автомобильные замки зажигания, работающие на таком принципе, отличаются удобством и высокой надежностью.

Широкое применение получило использование МУМС в качестве датчиков положения ротора вентильных (бесколлекторных) электродвигателей. Чаще всего датчик положения ротора представляет собой неподвижное кольцо из немагнитного материала, на котором равномерно по окружности установлены 2, 3 или 4 МУМС (в зависимости от числа секций обмотки возбуждения). Микросхемы попадают в зазоры вращающейся вместе с валом системы управляющих магнитов. Ротором электродвигателя служит многополюсный постоянный магнит, а многосекционная обмотка возбуждения играет роль статора. Вращающее магнитное поле обмоток возбуждения формируется бесконтактным коммутатором по командам датчика положения ротора. При этом одна микросхема управляет, как правило, одной из секций обмотки возбуждения. Использование МУМС в датчике положения ротора обеспечивает возможность управления частотой вращения вентильных электродвигателей в очень широких пределах - от нескольких оборотов в минуту до 60 000. Такие двигатели весьма перспективны для прямого привода электропроигрывателей и магнитофонов, так как обладают большим сроком службы (до 10000 ч), компактны и бесшумны; их КПД достигает 70 %.

С применением МУМС созданы бесконтактные электронные реле. Магнитная система и обмотка такого реле принципиально такие же, как и у обычного электромагнитного, но якорь и связанные с ним контакты отсутствуют. Их заменяют микросхема, установленная в зазоре магнитопровода, и транзисторный усилитель тока. Исполнительный узел реле, выполненный на мощных транзисторах или тиристорах, может быть рассчитан на большой коммутируемый ток (или напряжение). При этом размеры реле остаются относительно небольшими.

Аналогичные устройства могут быть использованы для электронной защиты цепей питания аппаратуры от перегрузки и замыканий. При необходимости защиты сильноточных цепей (до 1000 А), вокруг провода контролируемой цепи располагают кольцевой концентратор, выполненный из трансформаторной стали. В зазор концентратора помещают МУМС. Превышение тока через контролируемый проводник сверх установленного порога приводит к переключению микросхемы и срабатыванию исполнительного устройства. Достоинствами таких релейных устройств являются полная развязка управляющих и исполнительных цепей, высокое быстродействие (десятые доли микросекунды) и искробезопасность.

На основе МУМС можно изготовить удобные и надежные конструкции органов управления. Перемещение рукоятки прибора, в основание которой вмонтирован постоянный магнит, к одному из крайних положений, приводит к переключению соответствующей микросхемы и передаче соответствующей команды.

Следует отметить, что МУМС могут быть использованы во многих случаях, в которых применяют герконы. Однако по сравнению с герконами магнитоуправляемые микросхемы обладают меньшими размерами, большей механической прочностью и устойчивостью, отсутствием дребезга контактов при переключении, в 10 раз большим быстродействием и надежностью.

Интересные возможности предоставляет применение МУМС в дефектоскопии. В качестве примера можно рассмотреть конструкцию головки для искателя оборванных проволок в канате. Эти приборы очень нужны горнякам, строителям, эксплуатационникам канатных дорог, лифтов и т. д. Принцип их работы основан на регистрации магнитного поля рассеяния, возникающего вокруг каната. Индукция поля рассеяния вдоль каната относительно невелика - около 15 мТл. Поэтому чувствительность головки повышают введением в систему магнитного концентратора. Он состоит из двух колец со скошенными внутрь поверхностями, в зазоре между которыми размещены МУМС. Зазор определяется толщиной микросхемы и должен быть как можно меньше. Для установки концентратора на канате концентрирующие кольца выполняют разъемными (из двух полуколец каждое). Поле, создаваемое магнитной системой, намагничивает контролируемый участок каната между полюсами. При отсутствии дефекта каната вокруг него на этом участке появляется равномерное поле рассеяния. При перемещении головки вдоль такого каната МУМС не переключается. При обрыве проволок в канате возникает деформация магнитного поля рассеяния, которое микросхема регистрирует, и уровень напряжения на ее выходе изменяется. Головку можно установить на срабатывание при обрыве определенного числа проволок и на определенную глубину их. От скорости перемещения головки по канату ее чувствительность почти не зависит, что позволяет проверять его в движении и останавливать головку искателя на месте обнаружения дефекта.

Основные преимущества магнитоуправляемых микросхем по сравнению с другими преобразователями физических (неэлектрических) величин простота обеспечения практически идеальных механической, электрической, тепловой и других видов развязки измерительных и управляющих цепей от объектов контроля, а также большой динамический диапазон и возможность непосредственного сопряжения со стандартными логическими узлами.

Выпускаемые промышленностью интегральные логические микросхемы К1116КП1, К1116КП2, К1116КПЗ, К1116КП4, К1116КП7, К1116КП8, К1116КП9 и К1116КП10 представляют собой электронные ключи, управляемые магнитным полем. Микросхемы этой серии представляют собой устройства малой степени интеграции, содержащие в одном кремниевом кристалле преобразователь магнитного поля и электронное устройство усиления и обработки сигнала. Преобразователем магнитного поля служит интегральный 4-электродный элемент Холла, принцип действия которого основан на возникновении на двух продольных электродах ЭДС, прямо пропорциональной произведению напряженности магнитного поля на ток, протекающий через поперечные электроды. Микросхемы изготовляют по эпипланарной технологии и оформляют в 3-х 5- выводном пластмассовом корпусе с жесткими плоскими выводами. Внешний вид и чертежи корпуса показаны на рисунке Штрих-пунктирным квадратом на чертежах обозначено размещение зоны чувствительности элемента Холла (размеры зоны у микросхем К1116КП9 и К1116КП10- 1,5Х 1,5 мм). По реакции на воздействие внешнего магнитного поля микросхемы подразделяют на униполярные, уровень напряжения на выходе которых зависит от значения индукции магнитного поля одной полярности, и биполярные, уровень выходного напряжения которых зависит как от значения индукции, так и от знака (полярности) воздействующего магнитного поля.

Униполярные микросхемы К1116КП1,К1116КПЗ, К1116КП9, К1116КП10 имеют прямой выход, сигнал на котором в отсутствие магнитного поля соответствует уровню логической 1. При повышении индукции внешнего магнитного поля до значения В>В СРАБ, происходит переключение микросхемы и уровень сигнала на ее выходе скачком изменяется до логического нуля. Униполярная микросхема К1116КП2 имеет инверсный выход, на котором уровень логической 1 появляется при воз действии магнитного поля с индукцией. С повышением температуры униполярных микросхем происходит увеличение значения индукции срабатывания / отпускания. С повышением температуры биполярных микросхем индукция срабатывания отпускания уменьшается. Температурный коэффициент изменения индукции срабатывания и отпускания лежит в пределах от 0,01 до 0,05 мТл/°С в зависимости от типа микросхемы. Повышенная помехоустойчивость микросхем обеспечена наличием гистерезиса (с индукцией 39 мТл) на характеристике переключения.

Микросхемы серии К 1116 рассчитаны на сопряжение с цифровыми интегральными микросхемами видов РТЛ, ДТЛ, ТТЛ, ЭСЛ, ТЛЛ и структуры КМОП. Одна из возможных схем сопряжения показана на рисунке. Минимальное сопротивление в омах резистора R1 определяют по формуле R1min > Uком / I o вых. max , где Uком - напряжение коммутации, I o вых. max -максимальный выходной ток низкого уровня.

Микросхемы К1116КП1 и К1116КП2 имеют по два синфазных выхода с открытым коллектором и стробирующий вход (вывод 3) При подаче на этот вход стробирующего импульса с уровнем 0, уровень выходного напряжения не будет зависеть от воздействия внешнего магнитного поля, т. е. будет реализована функция «запрет» Если вход стробирования не используют, его необходимо подключить к плюсовому проводу питания.

МИКРОСХЕМЫ

СЕРИИ KIII6

ные логические микросхемы КШ6КП1, К1116КП2, КП16КПЗ, КП 16КП4, К111ЬКП7, К1116КП8, К1116КП9 и КП16КП10 пред * ставляют собой особый класс полупроводниковых приборов, принцип действия которых основан на изменении сигнала на их выходе при воздействии внешнего магнитного поля. Иначе говоря, эти микросхемы выполняют функции электронных ключей, управляемых магнитным полем.

Магнитоуправляемые микросхемы находят широкое применение в качестве чувствительных элементов в функциональнориентн рованных магнитных датчиках электрического тока и напряжения, скорости и направления вращения, угла поворота и конечного положения, расхода жидкости и газа и т. д. Их также используют в бесконтактных (вентильных) электродвигателях, устройствах аварийной и охранной сигнализации, бесконтактных системах электронного зажигания горючей смеси в двигателях внутреннего сгорания, системах авто¬

стопа в бытовой радиоаппаратуре, в металлоискателях и дефектоскопах, в электронных предохранителях, в клавиатуре ЭВМ и т. д. и т. п.

Основные преимущества магнитоуправляемых микросхем по сравнению с другими преобразователями физических (неэлектрических) величин - простота обеспечения практически идеальных механической, электрической, тепловой и других видов развязки измерительных и управляющих цепей от объектов контроля, а также большой динамический диапазон и возможность непосредственного сопряжения со стандартными логическими узлами.

Микросхемы этой серии представляют собой устройства малой степени интеграции, содержащие в одном кремниевом кристалле преобразователь магнитного поля и электронное устройство усиления и обработки сигнала. Преобразовате¬

лем магнитного поля служит интегральный 4-электродный элемент Холла, принцип действия которого основан на возникновении на двух продольных электродах ЭДС. прямо пропорциональной произведению напряженности магнитного поля на ток, протекающий через поперечные электроды.

Микросхемы изготовляют по эпипланарной технологии и оформляют в 3- и 5- выводном пластмассовом корпусе с жесткими плоскими выводами. Внешний вид и чертежи корпуса показаны на рис. I, а цоколевка - в табл. 1, Штрих-пунктирным квадратом на чертежах обозначено размещение зоны чувствительности элемента Холла (размеры зоны у микро схем К1116КП9 и К1116КП10 - 1,5Х 1,5 мм). Функциональная схема типовой микросхемы представлена на рис. 2. По реакции на воздействие внешнего магнитного ноля микросхемы подразделяют Таблица 1

Микросхема

Номер вывода

К1116КП1, КП16КП2

К1116КЗ, К1116КП4 К1116КП7, К1116КП8

К1116КП9, К1116КП10

К1116КП9, К1116КП10

на униполярные, уровень напряжения на выходе которых зависит от значения индукции магнитного поля одной полярности, и биполярные, уровень выходного напряжения которых зависит как от значения индукции, так и от знака (полярности) воздействующего магнитного поля.

(Продолжение следует)

Материал подготовили М. БАРАНОЧНИКОВ, В. ПАПУ

г. Москва

Ни когда не задумывался о принципе работы вентиляторов, применяемых в компьютерной и офисной технике. Но тут неожиданно сдох один из таких (Фото 1).

Пришлось произвести вскрытие (Фото 2). И здесь обнаружилась микросхема, управляемая магнитным полем – датчик Холла. Стал искать информацию о принципе работы таких вентиляторов и нашел в журнале «Радио» за 2001 год №12 стр. 33. Статья называется «Ремонт вентиляторов электронных устройств». В моем вентиляторе стояла другая микросхема (Фото 2 ,3). Эта микросхема имеет два инверсных относительно друг друга выхода, которые меняют свое состояние на противоположное при приближении магнита и восстанавливают свое состояние, когда магнит убирают. Так, как у меня этих вентиляторов б\у много, я нашел в одном из них датчик Холла с тремя выводами (Фото 4). Эта микросхема работает немного по-другому. Изменить состояние выхода датчика можно изменением направления магнитного поля, т.е. при приближении магнита на выходе 2 микросхемы скачком появляется напряжение высокого уровня (логическая единица), при его удалении это напряжение остается, чтобы сбросить состояние выхода в «0» надо поднести магнит к датчику другим полюсом. Я провел небольшой эксперимент, взял магнит от устройства регулировки линейности строк телевизоров (Фото 5). Красной линией на фото показана нулевая плоскость между полюсами магнита. Краской помечен южный полюс магнита. Магнит закрепил гайками на шпильке, шпильку закрепил в патроне минидрели. Соединил соответствующим образом микросхему, к ее выходу подсоединил осциллограф. При приближении вращающегося магнита со скоростью 9000 об\мин на экране осциллографа наблюдались четкие прямоугольные импульсы.

Достоинством таких микросхем, на мой взгляд, является еще и то, что изменяя напряжения питания этих микросхем их выход можно согласовывать с любым типом жесткой логики. На их основе можно сотворить датчики для различных устройств. Надо только подумать, информация к размышлению есть. До свидания. К.В.Ю.