Узел управления отопления: функции, устройство, преимущества. Система погодного (климатического) регулирования многоквартирных многоэтажных домов (ЖКХ) Узел управления и регулирования электроэнергии

В любой здании, в том числе и в частном доме, присутствует несколько систем жизнеобеспечения. Одна из них – это отопительная система. В частных домах могут использоваться разные системы, которые выбираются в зависимости от размеров постройки, количества этажей, особенностей климата и других факторов. В данном материале мы подробно разберем, что представляет собой тепловой узел отопления, как он работает и где используется. Если у вас уже стоит элеваторный узел, то вам будет полезно узнать про дефекты и способы их устранения. Так выглядит современный элеваторный узел. Здесь изображен агрегат с электроприводом. Также встречаются другие виды этого изделия.

Простыми словами, тепловой узел представляет собой комплекс элементов, служащих для соединения тепловой сети и потребителей тепла. Наверняка у читателей возник вопрос, можно ли установить этот узел самостоятельно. Да, можно, если вы умеете читать схемы. Мы рассмотрим их, причем одна схема будет разобрана подробно.

Принцип работы

Чтобы понять, как работает узел, необходимо привести пример. Для этого мы возьмем трехэтажный дом, так как элеваторный узел применяется именно в многоэтажных домах. Основная часть оборудования, которая относится к этой системе, расположена в подвальном помещении. Лучше понять работу нам поможет схема ниже. Мы видим два трубопровода:

  1. Подающий.
  2. Обратный.

Теперь нужно найти на схеме тепловую камеру, через которую вода отправляется в подвальное помещение. Также можно заметить запорную арматуру, которая должна в обязательном порядке стоять на входе. Выбор арматуры зависит от типа системы. Для стандартной конструкции используют задвижки. Но если речь идет о сложной системе в многоэтажном доме, то мастера рекомендуют брать стальные шаровые краны.

При подключении теплового элеваторного узла необходимо придерживаться норм. В первую очередь это касается температурных режимов в котельных. При эксплуатации допускаются следующие показатели:

  • 150/70°C;
  • 130/70°С;
  • 95(90)/70°C.

Когда температура жидкости находится в пределах 70-95°C, она начинает равномерно распределяться по всей системе за счет работы коллектора. Если же температура превышает 95°C, элеваторный узел начинает работать на ее понижение, так как горячая вода может повредить оборудование в доме, а также запорную арматуру. Именно поэтому в многоэтажных домах используется такой тип конструкции – он контролирует температуру автоматически.

Разбор схемы

Как вы поняли, узел состоит из фильтров, элеватора, контрольно-измерительных приборов и арматуры. Если вы планируете самостоятельно заниматься установкой этой системы, то стоит разобраться со схемой. Подходящим примером будет многоэтажка, в подвальном помещении которой всегда стоит элеваторный узел.

На схеме элементы системы отмечены цифрами:

1, 2 – этими цифрами обозначены подающий и обратный трубопроводы, которые установлены в теплоцентрали.

3,4 – подающий и обратный трубопроводы, установленные в системе отопления постройки (в нашем случае это многоэтажный дом).

5 – элеватор.

6 – под этой цифрой обозначены фильтры грубой очистки, которые также известны как грязевики.

7 – термометры

8 – манометры.

В стандартный состав этой системы отопления входят приборы контроля, грязевики, элеваторы и задвижки. В зависимости от конструкции и назначения, в узел могут добавляться дополнительные элементы.

Интересно! Сегодня в многоэтажных и многоквартирных домах можно встретить элеваторные узлы, которые оснащены электроприводом. Такая модернизация нужна для того, чтобы регулировать диаметр сопла. За счет электрического привода можно корректировать тепловой носитель.

Стоит сказать, что с каждым годом коммунальные услуги дорожают, это касается и частных домов. В связи с этим производители систем снабжают их устройствами, направленными на сбережение энергии. К примеру, теперь в схеме могут присутствовать регуляторы расхода и давления, циркуляционные насосы, элементы защиты труб и очистки воды, а также автоматика, направленная на поддержание комфортного режима.

Также в современных системах может быть установлен узел учета тепловой энергии. Из названия можно понять, что он отвечает за учет потребления тепла в доме. Если это устройство отсутствует, то не будет видна экономия. Большинство владельцев частных домов и квартир стремятся поставить счетчики на электроэнергию и воду, ведь с ними платить приходится значительно меньше.

Характеристики узла и особенности работы

По схемам можно понять, что элеватор в системе нужен для охлаждения перегретого теплоносителя. В некоторых конструкциях присутствует элеватор, который может и нагревать воду. Особенно такая система отопления актуальна в холодных регионах. Элеватор в этой системе запускается только тогда, когда остывшая жидкость смешивается с горячей водой, поступающей из подающей трубы. Схема. Под номером «1» обозначена подающая линия тепловой сети. 2 – это обратная линия сети. Под цифрой «3» обозначен элеватор, 4 – регулятор расхода, 5 – местная система отопления.

По этой схеме можно понять, что узел значительно повышает эффективность работы всей системы отопления в доме. Он работает одновременно как циркуляционный насос и смеситель. Что касается стоимости, то обойдется узел достаточно дешево, особенно тот вариант, который работает без электроэнергии.

Но любая система имеет и недостатки, не стал исключением:

  • Для каждого элемента элеватора нужны отдельные расчеты.
  • Перепады компрессии не должны превышать 0,8-2 Бар.
  • Отсутствие возможности контролировать высокую температуру.

Как устроен элеватор

В последнее время элеваторы появились в коммунальном хозяйстве. Почему же выбрали именно это оборудование? Ответ прост: элеваторы остаются стабильными даже в том случае, когда в сетях происходят перепады гидравлического и теплового режимов. Состоит элеватор из нескольких частей – камеры разряжения, струйного устройства и сопла. Также можно услышать про «обвязку элеватора» – речь идет о запорной арматуры, а также измерительных приборов, которые позволяют поддерживать нормальную работу всей системы.

Как было упомянуто выше, сегодня используются элеваторы, оснащенные электроприводом. За счет электрического привода механизм автоматически контролирует диаметр сопла, как результат, в системе поддерживается температура. Использование таких элеваторов способствует уменьшению счетов за электроэнергию.

Конструкция оснащена механизмом, который вращается за счет электрического привода. В более старых версиях используется зубчатый валик. Предназначен механизм для того, чтобы дроссельная игла можно двигать в продольном направлении. Таким образом меняется диаметр сопла, после чего можно изменить расход теплового носителя. За счет этого механизма расход сетевой жидкости можно снизить до минимума или повысить на 10-20%.

Возможные неисправности

Частой неисправностью можно назвать механическую поломку элеватора. Это может произойти из-за увеличения диаметра сопла, дефектов запорной арматуры или засорения грязевиков. Понять, что элеватор вышел из строя, довольно просто – появляются ощутимые перепады температуры теплового носителя после и до прохода через элеватор. В случае, если температура небольшая, то устройство просто засорилось. При больших перепадах требуется ремонт элеватора. В любом случае, при появлении неисправности требуется диагностика.

Сопло элеватора довольно часто засоряется, особенно в тех местах, где вода содержит множество добавок. Этот элемент можно демонтировать и прочистить. В случае, когда увеличился диаметра сопла, необходима корректировка или полная замена этого элемента.

К остальным неисправностям можно отнести перегревы приборов, протечки и прочие дефекты, присущие трубопроводам. Что касается грязевика, то степень его засорения можно определить по показателям манометров. Если давление увеличивается после грязевика, то элемент нужно проверить.

26.08.2010

Автоматизированный узел управления системой отопления, производства ОАО «САНТЕХПРОМ», внесён в Реестр новой техники, применяемой в строительстве (реконструкции) объектов городского заказа.

26.07.2010 г. на заседании Экспертной комиссии по новой технике было принято решение о внесении автоматизированного узла управления системой отопления, производства ОАО «САНТЕХПРОМ», в Реестр новой техники, применяемой в строительстве (реконструкции) объектов городского заказа г.Москвы.

Краткая справка:

Автоматизированный узел управления (АУУ) предназначен для автоматического регулирования параметров теплоносителя (температура, давление), поступающего в систему отопления жилой части многоквартирных домов и других зданий. Регулирование производится в соответствии с температурой наружного воздуха. При понижении температуры воздуха температура теплоносителя увеличивается, при увеличении температуры воздуха, температура теплоносителя, поступающего в систему отопления жилой части зданий уменьшается. Также с применением АУУ обеспечивается расчетный перепад давления между подающей и обратной магистралями систем отопления жилой части здания.

АУУ представляет собой блок заводской готовности, полностью собранный и готовый к установке на объекте.

В настоящее время ГУП «МНИИТЭП», ООО «Данфосс» и ОАО «САНТЕХПРОМ» определена номенклатура АУУ, которая насчитывает 150 типов, которые можно разделить по тепловой нагрузке и схеме установки оборудования, а на заводе «САНТЕХПРОМ» организовано серийное производство АУУ в виде блоков заводской готовности.

Принцип работы АУУ заключается в следующем. Теплоноситель, поступающий от ЦТП, движется через АУУ. В составе АУУ есть контроллер. В нем - предварительно установлен температурный график, записанный на режимной карте. С помощью датчиков производится сравнение фактической и заданной температуры теплоносителя. С помощью насосов производится смешение теплоносителя из обратной магистрали с теплоносителем из подающей магистрали. Подача теплоносителя регулируется с помощью регулирующего клапана. Перепад давления в системе отопления регулируется с помощью регулятора перепада давления.

В состав АУУ входят следующие основные компоненты:

    насос смешения

    регулирующий клапан с электроприводом

    регулятор перепада давления

    магнитный фильтр

    обратный клапан

    стальные шаровые краны

    датчики температуры

    датчики давления

    манометры

    термометры

    датчик температуры наружного воздуха

    контроллер

    шкаф управления электрический

В двух пятиэтажных домах в районе «Метрогородок» в рамках выборочного капитального ремонта инженерных систем, силами Префектуры ВАО города Москвы, ОАО «САНТЕХПРОМ» и ООО «Данфосс» были установлены АУУ. Они заменили элеваторные узлы. Также были заменены отопительные приборы . На новых отопительных приборах были установлены автоматические терморегуляторы. На стояках системы отопления были установлены балансировочные клапаны. В последующий отопительный сезон был проведен мониторинг теплопотребления в этих домах:

  • Фактическое потребление тепловой энергии в доме составило 425,7 Гкал;
  • Нормативное потребление тепловой энергии составило 673,7 Гкал;
  • Экономия составила 248 Гкал или 37 %.

Другой дом, расположенный в том же районе и питающийся от того же ЦТП, что и первый дом показал следующие результаты:

  • Фактическое потребление тепловой энергии в доме составило 339,8 Гкал;
  • Нормативное потребление тепловой энергии составило 493,8 Гкал;
  • Экономия составила 154 Гкал или 31 %.

По программе капитального ремонта жилых домов города Москвы в 2008 - 2010 годах запланирована установка более 1000 АУУ. По состоянию на июль 2010 года установлены около 600 АУУ в различных округах города Москвы. По информации руководителя комплекса городского хозяйства результаты мониторинга жилых домов в прошлом отопительном сезоне показали, что экономия потребления тепловой энергии составляет до 34%.

Таким образом, экономия потребления тепловой энергии в жилых домах может быть достигнута, в частности, если применить следующее инженерное оборудование:

    АУУ заводского изготовления.

    Балансировочные клапаны.

    Отопительные приборы со встроенными автоматическими терморегуляторами.

Выписка из Реестра новой техники по Протоколу №3/2010 Экспертной комиссии от 26.07.2010 г.

Наименование образца новой техники: Автоматизированный узел управления системы отопления (АУУ СО).

Назначение и область применения: АУУ для систем отопления с регулированием (поддержанием) параметров температуры и давления теплоносителя в системах отопления. Применяется в соответствии с действующими нормативами по энергосбережению при присоединении жилых и общественных зданий к ЦТП вместо элеваторного узла управления. Для общественных зданий возможно регулирование параметров вентиляции и кондиционирования.

Разработчик, изготовитель, поставщик: ГУП «МНИИТЭП», ОАО «САНТЕХПРОМ»

Год выпуска: 2008

Техническая характеристика (производительность, мощность и др.): Технические характеристики:

Б) Температурные режимы:

    Местная вода ° С без смешения, насос на обратном трубопроводе с трехходовым клапаном:

    Перегретая вода ° С со смешением, насос на перемычке с регулятором перепада давления:

    Перегретая вода ° С со смешением, насос на обратном трубопроводе:

Условия эксплуатации. Гарантийный срок службы: Условия эксплуатации:

А) Вытяжная вентиляция;

Б) Электричество (бесперебойная подача электроэнергии 220В);

В) Датчик наружного воздуха должен быть размещен снаружи здания на северной стене;

Г) Резервный насос (для недопущения замерзания системы отопления в случае поломки основного насоса);

Д) Отдельное помещение, возможно подвального типа, с дверью и замком (для ограничения доступа посторонних лиц).

Температура в помещении должна быть в диапазоне от +1 до +30 ° С.

Периодический осмотр системы квалифицированным персоналом службы эксплуатации.

Срок службы: 5 лет без ремонта.

Цена за единицу, руб. (по данным заявителя): Зависит от схемы 1-12 и нагрузки и составляет от 117 392 руб. без НДС до 1 367 844 руб. без НДС

Показатели эффективности. Окупаемость: Позволяет снизить потребление тепловой энергии на 50%. Плановая прибыль по энергосбережению ресурсов. Окупаемость в среднем 2 года.

Благодаря автоматизированному узлу управления подачи тепловой энергии (АУУ), устанавливаемому в подвале дома, жильцы могут сэкономить от 20 до 30 процентов тепла в зависимости от технического состояния дома. Такое оборудование считается одним из наиболее эффективных решений в снижении стоимости услуг ЖКХ.

Внедрение АУУ заметно сокращает ежемесячные платежи жильцов как многоквартирных, так и частных домовладений. Оборудование позволяет отслеживать колебания внешней температуры воздуха и управляет количеством и температурой теплоносителя, подаваемого в дом. Для контроля работы в режиме реального времени оборудование оснащено системой диспетчеризации. Работа этой системы позволяет избежать излишней подачи теплоносителя или так называемого «перетопа», на который часто жалуются жители с приходом первых теплых дней.

Поставщики тепла вынуждены подавать в дом блольше энергии, чем это необходимо, поскольку оборудование в котельных не позволяет быстро реагировать на изменение температуры наружного воздуха. Чтобы понизить температуру в квартирах многие открывают окна, тем самым отапливая улицу за свой счет и за счет своих соседей. Эффект «перетопа» особенно хорошо видно через тепловизор, а последствия отражаются в счетах за отопление, завышенных примерно на 30 процентов.

АУУ - дорогостоящее оборудование, однако существует механизм, предусматривающий его установку за счет средств энергосервисной компании. При этом компенсация затрат инвесторов на покупку и установку оборудования осуществляется за счет полученной экономии. Договор заключается на срок от 3 до 5 лет, в зависимости от объема потребления и величины достигнутой экономии. По истечении срока действия договора установленное оборудование безвозмездно передается в собственность жителям в исправном рабочем состоянии.

А главное, жильцам уже никогда не придет за свой счет оплачивать излишки тепла, вне зависимости от уличной температуры или ее колебаний.

Что необходимо сделать для бесплатной установки АУУ

  1. Необходимо провести общее собрание собственников жилья для заключения договора с представителями энергосервисной компании.
  2. Энергосервисная компания, на основании решения собрания жильцов, подписывает договор на бесплатную установку энергосберегающего оборудования.
  3. Энергосервисная компания проводит работы по установке АУУ и сопутсвующие энергосберегающие мероприятия.
  4. На время действия договора размер платежа за отопление останется прежним, но экономия за счет рационального потребления тепла будет распределена между жильцами и энергосервисной компанией: часть доходов пойдет на компенсацию затрат компании, а часть жителям дома.
  5. По окончании срока действия договора вся полученная экономия останется у жильцов.

Автоматизированный узел управления системы отопления является разновидностью индивидуального теплового пункта и предназначен для управления параметрами теплоносителя в системе отопления в зависимости от температуры наружного воздуха и условий эксплуатации зданий.

Узел состоит из корректирующего насоса, электронного регулятора температуры, поддерживающего заданный температурный график и регуляторов перепада давления и расхода. А конструктивно – это смонтированные на металлической опорной раме трубопроводные блоки, включающие насос, регулирующую арматуру, элементы электроприводов и автоматики, контрольно-измерительные приборы, фильтры, грязевики.

В автоматизированном узле управления системой отопления установлены регулирующие элементы фирмы «Danfoss», насос - фирмы «Grundfoss». Комплектация узлов управления производится с учетом рекомендаций специалистов фирмы «Danfoss», которые оказывают консультационные услуги при разработке данных узлов.

Узел работает следующим образом. При наступлении условий, когда температура в тепловой сети превышает требуемую, электронный регулятор включает насос, а тот добавляет в систему отопления столько охлажденного теплоносителя из обратного трубопровода, сколько необходимо для поддержания заданной температуры. Гидравлический регулятор воды в свою очередь прикрывается, уменьшая подачу сетевой воды.

Режим работы автоматизированного узла управления системой отопления в зимнее время круглосуточный, температура поддерживается в соответствии с температурным графиком с коррекцией по температуре обратной воды.

По желанию заказчика может быть предусмотрен режим снижения температуры в отапливаемых помещениях в ночное время, в выходные и праздничные дни, что дает значительную экономию.

Снижение температуры воздуха в жилых зданиях в ночное время на 2-3°С не ухудшает санитарно-гигиенические условия и в то же время дает экономию в размере 4-5 %. В производственных и административно-общественных зданиях экономия теплоты за счет снижения температуры в нерабочее время достигается в еще большей степени. Температура в нерабочее время может поддерживаться на уровне 10-12 °С. Общая экономия тепла при автоматическом регулировании может составить до 25% годового расхода. В летний период автоматизированный узел не работает.

Перспективным подходом к разрешению сло­жившейся ситуации служит ввод в эксплуатацию ав­томатизированных тепловых пунктов с коммерческим узлом учета тепла, который отражает фактическое потребление тепловой энергии потребителем и по­зволяет отслеживать текущее и суммарное потребление тепла за заданный промежуток времени.

Целевая аудитория, решения:

Ввод в эксплуатацию автоматизированных тепловых пунктов с коммерческим узлом учета тепла позволяет решать следующие задачи:

АО «Энерго»:

  1. повышенная надежность работы оборудования, как следствие снижение аварий и средств на их устранение;
  2. точность регулировки теплосети;
  3. снижение затрат на водоподготовку;
  4. уменьшение ремонтных участков;
  5. высокая степень диспетчеризации и архивирования.

ЖКХ, муниципальное управляющее предприятие (МУП), управляющая компания (УК):

  • отсутствие необходимости постоянного сантехнического и операторского вмешательства в рабо­ту теплового пункта;
  • уменьшение обслуживающего персонала;
  • плата за реально потребленную тепловую энергию без потерь;
  • снижение потерь на подпитку системы;
  • высвобождение свободных площадей;
  • долговечность и высокая ремонтопригодность;
  • комфорт и легкость управления тепловой нагрузкой. Проектные организации:
  • строгое соответствие техническому заданию;
  • широкий выбор схемных решений;
  • высокая степень автоматизации;
  • большой выбор комплектации тепловых пунктов инженерным оборудованием;
  • высокая энергоэффективность. Промышленные предприятия:
  • высокая степень резервирования, особенно важна при непрерывных технологических процессах;
  • учет и точное соблюдение высокотехнологичных процессов;
  • возможность использования конденсата при наличии технологического пара;
  • регулирование температуры по цехам;
  • регулируемый отбор горячей воды и пара;
  • снижение подпитки и т.д.

Описание

Тепловые пункты подразделяются на:

  1. индивидуальные тепловые пункты (ИТП), служащие для присоединения систем отопления, вен­тиляции, горячего водоснабжения и технологических теплоиспользующих установок одного зда­ния или его части;
  2. центральные тепловые пункты (ЦТП) выполняющие те же функции что и ИТП для двух зданий или более.

Одним из приоритетных направлений деятельности компании ЗАО «ТеплоКомплектМонтаж» является изготовление блочных автоматизированных тепловых пунктов с применением современных технологий , оборудования и материалов.

Все более широкое применение находят тепловые пункты, изготавливаемые на единой раме в модульном исполнении высокой заводской готовности называемые блочными, далее БТП. БТП представляют собой законченное заводское изделие, предназначенное для передачи тепловой энергии от ТЭЦ или котельной к системе отопления, вентиляции и горячего водоснабжения. В состав БТП входит следующее оборудование: теплообменники, контроллер (щит электроуправле­ния), регуляторы прямого действия, управляющие клапаны с электроприводом, насосы, кон­трольно-измерительные приборы (КИП), запорная арматура и др. КИП и датчики обеспечивают измерение и контроль параметров теплоносителя и выдают сигналы на контроллер о выходе па­раметров за пределы допустимых значений. Контроллер позволяет управлять следующими сис­темами БТП в автоматическом и в ручном режиме:

Регулирования расхода, температуры и давления теплоносителя из тепловой сети согласно техническим условиям теплоснабжения;

Регулирования температуры теплоносителя, подаваемого в систему отопления, с учетом температуры наружного воздуха, времени суток и рабочего дня;

Подогрева воды на ГВС и поддержания температуры в пределах санитарных норм;

Защиты контуров системы отопления и ГВС от опорожнения при плановых остановах на ре монт или авариях в сетях;

Аккумулирования воды ГВС, позволяющей компенсировать пик потребления в часы макси­мальной нагрузки;

  1. частотного регулирования привода насосами и защиты от «сухого хода»;
  2. контроля, оповещения и архивирования нештатных ситуаций и др.

Исполнение БТП варьируется в зависимости от применяемых в каждом отдельном случае схем присоединения систем теплопотребления, типа системы теплоснабжения, а также конкрет­ных технических условий проекта и пожеланий заказчика.

Схемы присоединений БТП к тепловым сетям

На рис. 1-3 представлены наиболее распространенные схемы присоединения тепловых пунк­тов к тепловым сетям.






Применение кожухотрубных или пластинчатых теплообменников в БТП?

В тепловых пунктах большинства зданий, как правило, установлены кожухотрубные теплооб­менники и гидравлические регуляторы прямого действия. В большинстве случаев, это оборудова­ние выработало свой ресурс, а также функционирует в режимах не соответствующих расчетным. Последнее обстоятельство вызвано тем, что фактические тепловые нагрузки в настоящее время поддерживаются на уровне существенно ниже проектного. Регулирующая аппаратура при значи­тельных отклонениях от расчетного режима своих функций не выполняет.

При реконструкции систем теплоснабжения, рекомендуется применять современное оборудо­вание, отличающееся компактностью, предусматривающее работу в полностью автоматическом режиме и обеспечивающее экономию до 30% энергии, по сравнению с оборудованием, применяв­шимся в 60-70 гг. В современных тепловых пунктах обычно используется независимая схема под­ключения систем отопления и горячего водоснабжения, выполненная на базе пластинчатых теп­лообменников. Для управления тепловыми процессами используются электронные регуляторы и специализированные контроллеры. Современные пластинчатые теплообменники в несколько раз легче и меньше, чем кожухотрубные соответствующей мощности. Компактность и малый вес пла­стинчатых теплообменников значительно облегчают монтаж, обслуживание и текущий ремонт оборудования теплового пункта.

Рекомендации по подбору кожухотрубных и пластинчатых теплообменников приведены в СП 41-101-95. Проектирование тепловых пунктов. В основе расчета пластинчатых теплообменников лежит система критериальных уравнений. Однако, прежде чем приступить к расчету теплообменника, необходимо рассчитать оптимальное распределение нагрузки ГВС между ступенями подогревателей и температурный режим каждой ступени с учетом метода регулирования отпуска тепла от теплоисточника и схем присоединения подогревателей ГВС.

Компания ЗАО «ТеплоКомплектМонтаж» имеет собственную апробированную программу теплового и гидравлического расчета, позволяющую подбирать пластинчатые паяные и разборные теплообменники Funke, которые полностью удовлетворяют требования заказчика.

БТП производства ЗАО «ТеплоКомплектМонтаж»

Основу БТП ЗАО «ТеплоКомплектМонтаж» составляют разборные пластинчатые теплообменники Funke, которые отлично зарекомендовали себя в жестких российских условиях. Они надежны, просты в обслуживании и долговечны. В качестве узла коммерческого учета тепла используются теплосчетчики, имеющие интерфейсный выход на верхний уровень управления и позволяющие считывать потребленное количество теплоты. Для поддержания заданной температуры в системе горячего водоснабжения, а также регулирования температуры теплоносителя в системе отопления применяется двухконтурный регулятор. Управление работой насосов, сбор данных с теплосчетчика, управление регулятором, контроль за общим состоянием БТП, связь с верхним уровнем управления (диспетчеризация) берет на себя контроллер, который совместим с персональным компьютером.

Регулятор имеет два независимых контура регулирования температуры теплоносителей. Один обеспечивает регулирование температуры в системе отопления в зависимости от графика, учитывающего температуру наружного воздуха, время суток, день недели и др. Другой поддер­живает установленную температуру в системе горячего водоснабжения. Работать с прибором можно как локально, используя встроенную клавиатуру и панель индикации, так и дистанционно по интерфейсной линии связи.

Контроллер имеет несколько дискретных входов и выходов. На дискретные входы подаются сигналы от датчиков по работе насосов, проникновению в помещение бТп, по пожару, затопле­нию и т.п. Вся эта информация доставляется на верхний диспетчерский уровень. Через дискрет­ные выходы контроллера осуществляется управление работой насосов и регуляторов по любым алгоритмам пользователя, задаваемых на этапе проектирования. Имеется возможность менять данные алгоритмы с верхнего уровня управления.

Контроллер может быть запрограммирован для работы с теплосчетчиком, выдавая данные о теплопотреблении в диспетчерский пункт. Через него же осуществляется связь с регулятором. Все приборы и коммуникационное оборудование монтируются в небольшом шкафу управления. Его размещение определяется на этапе проектирования.

В подавляющем большинстве случаев, при реконструкции старых систем теплоснабжения и создании новых, целесообразно применять именно БТП. БТП, будучи собраны и испытаны в заво­дских условиях, отличаются надежностью. Монтаж оборудования упрощается и удешевляется, что, в конечном счете, снижает полную стоимость реконструкции или нового строительства. Каж­дый проект БТП ЗАО «ТеплоКомплектМонтаж» является индивидуальным и учитывает все особенности теплового пункта заказчика: структуру теплового потребления, гидравлическое сопротивление, схемные решения тепловых пунктов, допустимые потери давления в теплообменниках, размеры помещения, качество водопроводной воды и многое другое.

Виды деятельности ЗАО «ТеплоКомплектМонтаж» в области БТП

ЗАО «ТеплоКомплектМонтаж» выполняет следующие виды работ в области БТП:

  1. составление технического задания на проект БТП;
  2. проектирование БТП;
  3. согласование технических решений по проектам БТП;
  4. инженерная поддержка и сопровождение проекта;
  5. подбор оптимального варианта оборудования и автоматизации БТП, с учетом всех требований заказчика;
  6. монтаж БТП;
  7. проведение пусконаладочных работ;
  8. сдача теплового пункта в эксплуатацию;
  9. гарантийное и послегарантийное обслуживание теплового пункта.

ЗАО «ТеплоКомплектМонтаж» успешно разрабатывает энергоэффективные системы теплоснабжения, инженерные системы, а также занимается проектированием, монтажом, реконструкцией, автоматизацией, проводит гарантийное и послегарантийное обслуживание БТП. Гибкая система скидок и широкий выбор комплектующих выгодно отличают БТП ЗАО «ТеплоКомплектМонтаж» от других. БТП ЗАО «ТеплоКомплектМонтаж» - это путь снижения затрат на энергоносители и обеспечение максимального комфорта.

С уважением, ЗАО
«ТеплоКомплектМонтаж»

Автоматизированный узел управления (АУУ) системы отопления - это разновидность индивидуального теплового пункта, который предназначен для автоматического регулирования параметров теплоносителя (давление, температура) в системе отопления зданий в зависимости от температуры наружного воздуха и условий эксплуатации.

АУУ состоит из насоса смешения, электронного регулятора температуры, который поддерживает расчетный температурный график теплоносителя, регулирующего клапана и регулятора перепада давления и расхода. Конструктивно АУУ представляет собой блок на металлической опорной раме, на которой установлены: трубопроводные блоки, насос, регулирующая арматура, электропривода, автоматика, контрольно-измерительные приборы (манометры, термометры), фильтры, грязевики.

Принцип работы АУУ следующий: при условии, когда температура теплоносителя в прямом трубопроводе тепловой сети превышает требуемую (по температурному графику), электронный регулятор включает насос смешения, который добавляет в систему отопления теплоноситель с обратного трубопровода (т.е. после системы отопления) поддерживая требуемую температуру, предотвращая «перетопы» в здании. В это время гидравлический регулятор прикрывается, уменьшая тем самым подачу сетевой воды.

Снижение температуры воздуха в помещениях зданий в ночное время не ухудшает условия санитарно-гигиенических требований, что в свою очередь снижает потребление тепловой энергии и ведет к ее экономии. Возможная экономия тепловой энергии при автоматическом регулировании составляет до 25 % годового расхода.

Рис. 1. Принципиальная схема автоматизированного узла управления отопления.

Теперь давайте проведем небольшой расчет эффекта от внедрения автоматизированного узла управления в офисном здании.

В нашем примере планируется модернизация системы отопления, путем установки АУУ, в соответствии с действующими нормами и правилами.

Расчет экономии тепловой энергии при внедрении АУУ

Экономия тепловой энергии (ΔQ) при установке АУУ определяется по выражению:

ΔQ= ΔQ п +ΔQ н +ΔQ с +ΔQ и, (1)

ΔQ п - экономия тепловой энергии от устранения перетопа зданий в осенне-весенний период, %;

ΔQ н - экономия тепловой энергии от снижения ее отпуска в ночное время, %;

ΔQ с - экономия тепловой энергии от снижения ее отпуска в выходные дни, %;

ΔQ и - экономия тепловой энергии за счет учета теплопоступлений от солнечной радиации и бытовых тепловыделений, %.

Экономия тепловой энергии ΔQп от устранения перетопа зданий в осенне-весенний период отопительного сезона, когда тепловой источник для удовлетворения нужд горячего водоснабжения отпускает теплоноситель с постоянной температурой, превышающей потребную для закрытых систем отопления (см. рис. 2. Температурный график 130-70) ориентировочно может быть определена по таблице №1.

Рис. 2. Температурный график 130-70.

Таблица № 1.

Относительную продолжительность осенне-весеннего периода, для различных регионов (с различными расчетными температурами наружного воздуха в отопительный период), необходимую для определения AQ п, можно найти по табл. № 2.

Таблица №2. Относительная продолжительность осенне-весеннего периода при различных расчетных температурах наружного воздуха за отопительный период.

Экономия теплоэнергии AQ н от снижения ее отпуска в ночное время оп­ределяется по выражению:

где а - продолжительность снижения отпуска теплоты в ночное время, ч/сут.;

Δt нр в - снижение температуры воздуха в помещениях в нерабочее время, °С;

t Р в - усредненная расчетная температура воздуха в помещениях, °С. Выбирается по СНиП 2.04.05-86 "Отопление, вентиляция и кондиционирование. Нормы проектирования".

t ср н - средняя температура наружного воздуха за отопительный сезон, °С. Вы­бирается по СНиП 2.04.05-86.

Для жилых зданий: снижение отпуска тепла рекомендуется производить с 21 ч. Через а часов регулятор должен включить отопление на расход теплоты, обеспечивающий восстановление температуры до нормальной. Нормальная тем­пература должна быть достигнута к 6-7 ч утра. Наиболее целесообразное снижение температуры = 2 °С (с = 20 °С до 18 °С). Для ориентировочных расчетов можно принять а = 6-7 ч.

Для административных зданий: продолжительность снижения отпуска тепла а определяется режимом работы здания, для ориентировочных расчетов можно принять а = 8-9 ч. Наиболее целесообразная величина снижения темпера­туры АС = 2-4 °С. При более глубоком снижении температуры необходимо учи­тывать возможности теплоисточника быстро увеличить отпуск тепла при резком снижении температуры наружного воздуха. В любом случае, значение температуры в период ночного снижения расхода теплоты в общественных зданиях должно обеспечить отсутствие выпадения конденсата на стенах ночью.

Экономия теплоэнергии ΔQс от снижения ее отпуска в выходные дни оп­ределяется по выражению (3):

где b - продолжительность снижения отпуска теплоты в нерабочие дни, сут./нед.

(при 5-ти дневной рабочей неделе b = 2, при 6-ти дневной b = 1).

Величина снижения температуры воздуха в помещениях в нерабочее время выбирается в соответствии с рекомендациями к формуле (2).

Экономия теплоэнергии ΔQ и за счет учета теплопоступлений от солнечной радиации и бытовых тепловыделений определяется по выражению (4):

где Δt и в - усредненное за отопительный сезон превышение температуры воздуха в помещениях сверх комфортной из-за теплопоступлений от солнечной радиации и бытовых тепловыделений, °С. Ориентировочно можно принять Δt и в = 1-1,5 °С (по опытным данным).

Пример расчета:

Офисное здание в Москве. Режим работы - 5 дней в неделю, с 9 00 до 18 00 .

t Р в = 18 °С, t ср н = -3,1 °С, t р н = -28 °С (по СНиП 2.04.05-86). Предполагается снижение температуры воздуха в помещениях на Δtнр в = 3 °С в ночные часы = 8 ч/сут.) и выходные дни (b = 2 сут./нед.). В этом случае:

Таблица №3. Расчет экономического эффекта от внедрения АУУ.

Параметры

Обозначение

Ед. измерения

Значение

Экономия тепловой энергии за счет установки АУУ

ΔQ=ΔQ н +ΔQ с +ΔQ и

Продолжительность снижения отпуска тепла в ночное время

Продолжительность снижения отпуска тепла в нерабочие дни

Снижение температуры воздуха в помещениях в нерабочее время

Усредненная расчетная температура воздуха в помещениях

Определяется по СНиП 2.04.05-91* "Отопление, вентиляция и кондиционирование"

Средняя температура наружного воздуха за отопительный сезон

Определяется по СНиП 23-01-99 "Строительная климатология"

Усредненное за отопительный сезон превышение температуры воздуха в помещениях сверх комфортной из-за теплопоступлений от солнечной радиации и бытовых тепловыделений

Экономия тепловой энергии от устранения перетопа зданий в осенне-весенний период отопительного сезона

ΔQ п

Экономия теплоэнергии от снижения ее отпуска в ночное время

ΔQн=((a·Δtнрв)/(24·(tрв-tсрн))*100

Экономия теплоэнергии от снижения ее отпуска в выходные дни

ΔQн=((b·Δtнрв)/(24·(tрв-tсрн))*100

Экономия теплоэнергии за счет учета теплопоступлений от солнечной радиации и бытовых тепловыделений

ΔQн=(Δtив)/(tрв-tсрн)*100

Таким образом, экономия тепловой энергии от установки АУУ составит 11,96 % от годового теплопотребления на отопление .