Внутрилабораторный контроль качества химических анализов и испытаний. Проведение внутрилабораторного контроля. Оперативный контроль процедуры анализа

Обратим внимание на следующее. Рекомендации РМГ 76 разработаны с учётом и в развитие требований международных стандартов серии ГОСТ Р ИСО 5725 (далее 5725), в первую очередь 6-й её части , касающейся ВЛК. Так вот, из двух интересующих нас видов контроля в последнем документе присутствует только проверка приемлемости. Оперативный контроль здесь не регламентируется. И в этом, думается, одна из причин упомянутого выше «смешивания»: при изучении оперативного контроля по РМГ 76, где, как заявлено, развиваются положения 5725, хочется найти в «родительском» документе первоисточник, и в качестве такового может «подвернуться» очень похожая проверка приемлемости.

Что касается наследования, то здесь нужно сказать, что организацией ФГУП «УНИИМ» разработана и выпущена инструкция МИ 2881-2004 (далее МИ 2881), играющая для проверки приемлемости ту же роль, что и РМГ 76 для ВЛК, а также РМГ 64-2003 для оценивания показателей точности . Наглядно это наследование изображено на схеме . Заметим, что помимо алгоритмов и методов, наследуемых из 5725, разработанные РМГ/МИ содержат свои собственные, и весьма значительные, добавления.

В контексте настоящей статьи необходимо также учитывать некоторые положения и алгоритмы, содержащиеся в нормативных документах (НД) на методики выполнения измерений (МВИ). Дело в том, что в этих документах, как отечественных, так и зарубежных, в той или иной степени также регламентируется контроль погрешностей. Большинство документов по МВИ создавались либо до внедрения документов , либо без их учёта. Из-за этого возникают определённые методические трудности для согласованного их использования совместно с регламентированными в новых документах методами ВЛК . Об этом речь будет идти далее.

Показатели качества

При проведении любых видов ВЛК основным критерием для принятия решений является сравнение получаемых при измерениях значений с контрольными пределами. Эти пределы вычисляются на базе показателей качества методик анализа или показателей качества результатов анализа . Терминология и методология их установления и использования имеет ряд особенностей. Рассмотрение их важно для дальнейшего изложения.

Анализ терминологии

Относящиеся к ВЛК термины и определения встречаются во многих НД. Между ними не всегда имеется строгая синхронизация. А для однозначной трактовки используемых формулировок зачастую требуется дополнительный анализ. Ниже рассматриваются некоторые проблемные понятия, важные для оперативного контроля.

Измеряемые значения

Без ограничения общности можно считать, что конечным итогом проведения любого КХА – другими словами измерения по МВИ – является некоторое числовое значение, выдаваемое в качестве результата для использования его в тех или иных целях. В 5725 такое значение называется результатом измерений , в РМГ 76 – результатом контрольного измерения , в МИ 2881 и РМГ 76 – результатом анализа . В других НД, в частности на методики измерений, могут встречаться и отличные названия, например окончательный результат . Мы будем придерживать термина результат измерения .

Другими важными для нас «объектами», фигурирующими в КХА, являются значения, полученные в результате двух или более повторений всех шагов измерения и используемые для усреднения с целью получения результата измерения (иногда вместо усреднения вычисляется медианы – см. далее). В 5725 это – единичные наблюдения , в РМГ 76 – результаты контрольных определений , в МИ 2881 и РМГ 76 – результаты единичных анализов (единичных определений) . Иногда также применяется термин параллельные определения , где слово «параллельные» означает получение всех значений в условиях повторяемости (см. далее). Мы будем придерживаться сочетания результат(ы) параллельного(ых) определения(ий) , поскольку условия повторяемости в рассматриваемых далее алгоритмах должны соблюдаться всегда.

Особенности показателя повторяемости

На практике при трактовке параметров погрешностей, приводимых в различных НД, возникают определённые трудности. Не в последнюю очередь это связано с неоднозначностью трактовки, в том или ином контексте, некоторых терминов, что было проиллюстрировано выше. Есть и другие причины.

Стандарты 5725 «пришли к нам» из-за рубежа и, вообще говоря, без адаптации (это аутентичный перевод). Применять же их нужно, в первую очередь, к отечественным МВИ. Но в практике составления зарубежных и отечественных НД на методики сложились различия.

Зарубежные НД практически никогда не регламентируют усреднение для получения результата измерений, поэтому та или иная форма термина «параллельные определения» в них отсутствует. (По крайней мере это подтверждается нашим анализом нескольких десятков американских и международных стандартов – ASTM и ISO соответственно, – используемых на предприятиях нефтепереработки.) Как итог, документы 5725 оперируют только результатами измерений и никогда – результатами параллельных определений (в том смысле, как это понимается в рассматриваемых здесь РМГ/МИ). Это в полной мере относится и к определению повторяемости , которая в 5725-6 (см. п.п. 3.12–14) определяется как степень близости независимых результатов измерений в условиях повторяемости. А это, в свою очередь, означает, что для того, чтобы реализовать какую-либо разновидность контроля повторяемости, необходимо дважды полностью (от начала до конца) выполнить МВИ .

Примечание. Именно из-за этого для повторяемости в 5725 количество параллельных измерений (не определений!) всегда равно 2.

Совсем иная картина наблюдается в отечественных НД на методики. Здесь практически всегда (если специфика МВИ это допускает) на последнем этапе для получения результата измерения регламентируется усреднение по двум или более результатам параллельных определений. Из статистики нетрудно понять, что разброс усреднённых результатов измерений , выполненных в условиях повторяемости, будет пропорционален разбросу используемых для усреднения результатов , в нашем случае параллельных определений (коэффициент пропорциональности равен, где n – количество этих определений). В связи с этим возникает естественное желание не делать для контроля повторяемости повторное измерение, как это регламентировано в 5725, а «удовлетвориться» уже полученными в первом измерении результатами параллельных определений. Что, собственно, и регламентируется в РМГ/МИ.

Правильно это или нет, дело вкуса. Но одно несомненно: в 5725 и в наследуемых РМГ/МИ повторяемость определяется по-разному . В первом случае это близость результатов измерений , во втором – близость результатов параллельных определений . Это может приводить к затруднениям при изучении и сравнении относящихся к ВЛК документов. К примеру, такая цитата из 5725 (стр. V): «экстремальные показатели прецизионности – (это) повторяемость, сходимость и воспроизводимость» – однозначно говорит, что повторяемость и воспроизводимость трактуются здесь как предельные значения чего-то одного (прецизионности). Но в РМГ это разные понятия: повторяемость относится к результатам параллельных определений, воспроизводимость – к результатам измерений.

Примечание. Осознание этого факта поможет преодолеть интуитивное предубеждение, что повторяемость всегда больше воспроизводимости. Если факторы, влияющие на разброс результатов измерений за счёт смены испытателей, оборудования, времени суток и т.д., незначительны (например в опытах в пределах лаборатории), то влияние вполне может оказаться преобладающим, и повторяемость превысит воспроизводимость.

Вышеизложенное важно для практической интерпретации характеристик погрешностей, приводимых в НД на МВИ, с целью их использования в ВЛК. Это рассматривается ниже.

Состав показателей качества

Как известно, ВЛК оперирует четырьмя показателями качества методики/результатов:

    повторяемости, или сходимости (одно и то же для методики и результатов);

    воспроизводимости (для методики) / внутрилабораторной (ВЛ) прецизионности (для результатов);

    правильности (разные для методики и для результатов);

    точности (разные для методики и для результатов).

Приведём некоторые особенности перечисленных показателей.

    Стандарты 5725 оперирует только показателями качества методики.

    Показатели правильности в оперативном контроле и проверке приемлемости не используются.

    Показатели точности выражаются в виде доверительного интервала погрешности результатов анализа и обычно проблем с трактовкой не имеют. Обозначаются как Δ и Δ л для методики и результатов соответственно (здесь и далее индекс «л» означает «лабораторный»).

    Показатель воспроизводимости. Как упоминалось выше, считается предельным случаем показателя прецизионности в условиях воспроизводимости, поэтому далее он и показатель ВЛ прецизионности будут называться просто показателями прецизионности. В математическом аппарате в РМГ/МИ в качестве основного для этих показателей используется представление в виде среднеквадратического отклонения (СКО), обозначаемого как σ R . и σ Rл. В то же время в НД на методики чаще используется предел прецизионности для двух результатов измерений. Наиболее распространённое обозначение R и R л.

    Показатель повторяемости в РМГ/МИ также принято выражать в виде СКО, но теперь уже параллельных определений, и обозначать как σ r (считается, что σ rл = σ r как предельное значение «прецизионности параллельных определений» в условиях повторяемости). По аналогии с прецизионностью, в НД на методики чаще используется предел повторяемости r для n параллельных определений.

Трактовка погрешностей в НД на МВИ

Большинство отечественных НД создавались до появления (или без учёта) 5725 и наследуемых документов, так что формы представления в них погрешностей достаточно разнообразны и значительно отличаются от того, что «хотелось бы видеть». Мы не будем здесь касаться вопросов аналитического представления (проще говоря, формул) зависимостей показателей погрешностей от измеряемого значения (это будет рассмотрено в других публикациях), а обратимся к особенностям, связанным с возможным видом их представления: СКО или предел.

Итак, чтобы непосредственно (без преобразований формул) воспользоваться математикой ВЛК, необходимо выполнить два шага:

Шаг 1. Привести показатели повторяемости и прецизионности к СКО, если они заданы в виде пределов. Для воспроизводимости это означает выполнение преобразования σ R = R/Q(P, 2) º R/2,77, для повторяемости – σ r = r/Q(P, n). При этом, с учётом предыдущего раздела, нужно внимательно отслеживать, какая повторяемость представлена в НД. Например, в ASTM D 1319–03 регламентировано всё-таки, вопреки тому, что утверждалось выше по поводу зарубежных стандартов, усреднение по представительной выборке. Но так как стандарт зарубежный, то, как мы уже знаем, в нём повторяемость задаётся для двух результатов измерений. И верным будет соотношение σ r = r/Q(P, 2). Тем более что количество усредняемых значений n представительной выборки из данного документа не узнать.

Шаг 2. Установить каким-либо способом ВЛ показатели прецизионности и точности (для повторяемости, как мы знаем, в качестве внутрилабораторного используется показатель методики). В идеале это проведение специального эксперимента по оцениванию (приложение В в РМГ 76). Возможна также оценка по результатам контрольных карт (КК). Это всё – экспериментальные методы. В РМГ 76 регламентированы также (п.4.7) расчётные способы оценки. И хотя они рассматриваются там как временные: должны применяться лабораторией только на стадии внедрения МВИ, – на практике (например в стандартах предприятия или руководствах по качеству лабораторий) их довольно часто рассматривают как «окончательные». В этом есть определённый смысл. И вот почему.

У контроля качества результатов измерений есть две цели:

    Отслеживать стабильность процессов производства, а значит и одной из важных его составляющих – процесса контроля качества материалов и продукции.

    Гарантировать заявленную погрешность продукции, а значит и главный её критерий – погрешность методик испытаний.

Первая задача, вообще говоря, является внутренней для предприятия или лаборатории. «Философия» примерно такова: если производство налажено, желательно, чтобы оно было стабилизировано. А для этого желательно, чтобы был стабилизирован и процесс измерений. Поэтому изменения в погрешностях результатов измерений, даже если они не нарушают погрешностей, заявленных в НД на МВИ, являются нежелательными. То есть – эта задача требует установления ВЛ показателей качества результатов измерений и впоследствии их контроля.

Вторая задача ориентирована на заказчика, будь то внешнего или внутреннего. И, по большому счёту, его интересует гарантирование погрешности результатов измерений, заявленной в НД на МВИ. То есть – контролироваться должны показатели качества методик измерений.

Примечание. Иногда желательно уменьшить заявляемые погрешности измерений. Например в экологических испытаниях, где эти погрешности учитываются в нормативах контроля, превышение которых влечёт за собой штрафные санкции. В таких случаях, разумеется, также потребуются внутрилабораторные показатели.

Из сказанного следует, что существуют ситуации, когда целесообразно использовать для контроля исключительно показатели качества методик. То есть поступать так, как это непосредственно прописывается в НД на эти методики. В этом смысле использование расчётных показателей по РМГ 76 является неким компромиссным решением и вполне допустимо, если оно принято осознанно и зафиксировано в руководстве по контролю качества лаборатории. Правда, в этом случае может потребоваться некоторая коррекция расчётов, в том числе и при программировании приложений поддержки ВЛК.

В заключение раздела коснёмся небольшого вопроса, вызывающего иногда затруднения на практике. Речь идёт о выборе формул для оценки расчётных показателей. В РМГ 76 (п.7.4) приводится два набора:

    первый набор характеризуется тем, что все показатели, кроме повторяемости, умножаются на 0,84. Должен применяться, когда для данной МВИ не планируется использование КК,

    второй набор характеризуется тем, что показатель погрешности не остаётся без изменений, а показатель правильности пересчитывается (с новой прецизионностью). Должен применяться, когда КК для МВИ планируются.

Обоснование всему этому, видимо, таково. При ведении КК рано или поздно будут сделаны регламентируемые в РМГ оценки внутрилабораторных показателей, будет выполнено их протокольное оформление для последующего использования в ВЛК. Если же ведение КК не планируется, «приходится слегка подправить» показатель погрешности.

Примечание. Употреблённое выше «слегка подправить», умножив на 0,84 (или, что то же самое, разделив на 1,2), с точки зрения статистики означает сужение интервала погрешности до уровня доверительной вероятности 0,9.

Алгоритмы процедур контроля

Образцы (контролируемые или используемые для контроля)

Согласно РМГ 76, оперативный контроль проводится время от времени при наступлении определённых событий, таких как смена партии реактивов, использование средств измерений после ремонта, новая серия рабочих проб и т.п. В то же время согласно МИ 2881 (как и 5725-6) проверка приемлемости единичных результатов осуществляют при получении каждого результата анализа рабочих проб. иллюстрирует такое соотношение между рассматриваемыми образцами.

Примечание. Существует некая неоднозначность в том, как употреблять термины проба , образец , измерение и пр. В частности, когда в целях контроля выполняется сразу несколько измерений или назначается повторное измерение. Если измерения неразрушающие, уместно, видимо, говорить об измерениях . В противном случае более точным будет термин образец (повторный или аликвотный). Думается, эта неоднозначность не приведёт к недоразумениям при чтении статьи.


Рис. 2 «Встраивание» образцов оперативного контроля в последовательность рутинных испытаний, проводимых по конкретной МВИ

Проверка приемлемости

По некоторым соображение рассмотрение интересующих нас алгоритмов контроля удобно начать с проверки приемлемости результатов, хотя это и не основная тема статьи.

Проверку приемлемости применяют к результатам, получаемым в условиях повторяемости или воспроизводимости. Последняя ситуация рассматриваться не будет, так как проверка приемлемости в этом случае относится в основном к взаимоотношениям между лабораториями, например между поставщиком и потребителем, что «далеко» от оперативного контроля.

Примечание. Напомним, что условиями повторяемости называются такие условия, когда измерения выполняются «по одной и той же методике на идентичных пробах в одинаковых условиях (один и тот же оператор, одна и та же установка и т.п.) и практически в одно и то же время (то есть подряд)». Условиями же воспроизводимости называются условия, когда имеется одна и та же методика и используются идентичные пробы, а всё остальное меняется. Чаще всего речь идёт об измерениях в различных лабораториях.

Согласно МИ 2881 проверка приемлемости в условиях повторяемости (далее в тексте условия уточняться не будут) применяется к результатам параллельных определений отдельных результатов. Проверка применяется к рутинным пробам (на – верхний ряд), причём ко всем. И если это так, то говорят, что измерения выполняются с проверкой приемлемости.

В 5725 даётся несколько иное определение. Связано это с тем, что, как отмечалось выше, в зарубежных НД «нет» параллельных определений. Поэтому в ситуациях с повышенными требованиями к результатам измерений процедура МВИ может выполняться два или более раз подряд и подвергаться контролю приемлемости для установления окончательного результата по этим измерениям. Такой алгоритм может быть прописан, например, в технических условиях (ТУ) на продукцию или в договоре. В отличие от отечественной практики, где выполнение «нескольких измерений подряд» называется параллельными определениями или чем-то подобным прописывается непосредственно в НД на МВИ.

Несмотря на расхождение в терминологии и некоторые нюансы, алгоритм проверки (), регламентированный в МИ 2881, фактически полностью совпадает с соответствующим алгоритмом 5725-6.

Примечание. В 5725-6 имеется также алгоритмы с получением другого количества дополнительных результатов. Принципиально они не отличаются от приведённого на .

Рис. 3 Алгоритм проверки приемлемости результатов измерений по 5725-6

Отметим следующие важные моменты:

    Контролируется (проверяется) только повторяемость.

    Результатом проверки приемлемости является установление результата измерения.

    Количество единичных результатов измерений, по которому определяется результат измерения, зависит от хода проверки приемлемости.

    Результат измерения может выражаться не только в виде среднего, но и в виде медианы.

Стоит сказать ещё вот о чём. В большинстве отечественных НД на МВИ регламентируется проверка приемлемости в виде простой проверки «в норме / не в норме». Фактически это означает, что в случае неудовлетворительной проверки результат попросту перемеряется.

Особая ситуация в зарубежных НД. Стандартная формулировка в них: «разница между двумя результатами может превышать контрольный предел только в одном случае из двадцати» (5% в соответствии с принятой в лабораторной практике доверительной вероятностью 0,95). Фактически здесь не идёт речь о повторных или дополнительных измерениях, а об отслеживании данных за некоторый промежуток времени. Последовательное применение этого положения приведёт к чему-то похожему на ведение КК.

Как в описанных случаях применить алгоритм , не нарушая НД? Ответ дан в МИ 2881: следует записать новый алгоритм в ТУ, руководство по качеству и т.п.

Последнее замечание. При реализации алгоритма затруднения может вызвать то обстоятельство, что ни в 5725, ни в МИ не регламентируется способ определения опорного значения, по которому вычисляется норматив контроля в случаях, когда показатель повторяемости зависит от измеряемой величины. Видимо, не остаётся ничего другого, как брать в качестве X оп текущее среднее значение, даже если затем в качестве окончательного результата будет использована медиана. Думается, это достаточно эффективно, поскольку вероятность такого события (необходимость медианы) крайне мала: при доверительной вероятности 0,95 два подряд нарушения повторяемости будут наступать в одном случае из 400 (0,25%).

Оперативный контроль

В отличие от проверки приемлемости, оперативный контроль проводится на специальных, дополнительных по отношению к рутинным, пробах (на Рис. 2 – нижний ряд). Даже если предположить, что в каких-то случаях только что испытанная рутинная проба тут же «включается» в оперативный контроль, скажем в методе добавок, всё равно это будет именно контрольное испытание, но с «некоторыми особенностями» получения первого измерения. К тому же такую практику нельзя признать целесообразной, так как в этом случае не так-то просто достигнуть точного соблюдения регламента оперативного контроля в соответствии с РМГ 76.

Алгоритмы оперативного контроля подразделяются на две категории:

Контроль повторяемости

Как отмечено выше, контроль повторяемости является вспомогательным: он должен, согласно п.5.10.2 в РМГ 76, применяться к результатам измерений, выполняемых внутри алгоритмов оперативного контроля погрешности (а также в не рассматриваемых здесь периодическом и выборочном статистическом контролях). Напомним, что контроль повторяемости выполняется только для МВИ, у которых для получения результата измерения предусмотрены параллельные определения.

Главная > Документ

Внутрилабораторный контроль качества лабораторных исследований

ОБЩИЕ ПОЛОЖЕНИЯ
Согласно определениям экспертов Международного Союза чистой и прикладной химии (1993) и Всемирной Организации здравоохранения (1981), под внутрилабораторным контролем качества понимают систему осуществляемых персоналом лаборатории мероприятий, которые направлены как на оценку того, достаточна ли надежность получаемых результатов для выдачи их лабораторией, так и на устранение причин неудовлетворительных характеристик этих результатов. При этом результаты выдаются лабораторией как для того, чтобы способствовать принятию клинического решения, так и для эпидемиологических либо исследовательских целей. В более общем смысле, внутрилабораторный контроль качества применим к любым этапам процесса получения аналитических результатов, начиная с определения потребностей клиницистов через этапы получения биоматериала и измерения количества анализируемых веществ и до этапа выдачи заключения. Целью его является обеспечение того, чтобы аналитический процесс удовлетворял предварительно установленным требованиям к точности анализа и величинам отклонения. Проведение внутрилабораторного контроля качества охватывает три принципиальных области:
    контроль качества преаналитической стадии; контроль качества аналитической стадии (статистический контроль качества); оценку результатов внутрилабораторного контроля качества.
На преаналитической стадии предусмотрен контроль:
    соответствия лабораторных приборов и оборудования планируемым видам исследований; оптимизации приготовления реактивов и процедур выполнения анализа; соответствия применяемых аналитических процедур рекомендованным либо унифицированным методам исследований; уровня подготовленности персонала. На аналитической стадии контролируют: идентичность свойств контрольных образцов (например, слитой сыворотки) и исследуемых проб; стабильность условий, в которых оцениваются базовые характеристики (точность и отклонение) данного метода анализа; идентичность обработки контрольных образцов и исследуемых проб на всех этапах исследования; простоту и ясность представления результатов внутрилабораторного контроля качества; наличие четких критериев браковки результатов анализа (контрольных правил).
Оценка результатов внутрилабораторного контроля качества предусматривает:
    тщательный анализ ошибок каждого цикла внутрилабораторного контроля качества и принятие корригирующих мер; регулярный анализ результатов внутри-лабораторного (а также межлабораторного) контроля качества в динамике с целью выявления тенденций в работе лаборатории.
Определения
При проведении контроля качества лабораторных исследований используются следующие термины. Метод референтный - метод, показывающий максимальную аналитическую специфичность и точность результатов измерения. Результаты, полученные с его помощью, позволяют дать оценку результатам анализа, полученным другими методами. Случайные ошибки- отклонения в повторном определении каких-либо параметров в одной и той же пробе, изменяющиеся непредсказуемым образом. Систематические ошибки- погрешности, одинаковые по знаку, происходящие от определенных причин, влияющих на результат либо в сторону увеличения, либо в сторону уменьшения. Систематические ошибки можно предусмотреть и устранить или ввести соответствующие поправки. Величина систематической ошибки характеризует точность результатов исследования. Контрольный материал - материал, предназначенный для осуществления контроля качества лабораторных исследований и приближающийся по наиболее существенным свойствам к исследуемому и анализируемому материалу. Контроль качества внутренний (внутрилабораторный) - система мер, предназначенных для оценки качества результатов анализа, полученных в лаборатории. Внешняя оценка качества - контроль сравнимости результатов, полученных в нескольких лабораториях на одном и том же контрольном материале одними и теми же методами или методами, дающими статистически достоверно совпадающие результаты. Сходимость измерений (precision, Konvergenz) - качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях (воспроизводимость в серии). Воспроизводимость измерений (reproducibility, Reproduzierbarkeit) - качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными людьми). Точность измерений (accuracy, Genauigkeit) - качество измерений, отражающее близость их результатов к истинному (референтному) значению измеряемой величины.
Порядок осуществления внутрилабораторного контроля качества
Внутрилабораторный контроль качества включает контроль воспроизводимости и точности (правильности) и может осуществляться с помощью методов, использующих специальные контрольные материалы или средства ряда методов, не требующих контрольных материалов. Внутрилабораторный контроль качества предусматривает оценку деятельности всего медперсонала, участвующего в доаналитичес-ком, аналитическом и постаналитическом этапах работы, так как на любом из них возможны ошибки, связанные с подготовкой больного к исследованию, забором пробы, ее подготовкой к исследованию, хранением образцов и т. д. В конечном счете, возможны неточности при выписке и регистрации готовых анализов, а также в их трактовке. Наиболее частые ошибки, не зависящие от работы лаборатории, но искажающие конечный результат:
    Положение тела, прием пищи перед забором крови, чрезмерно тугой жгут, наложенный на плечо, физическое или эмоциональное напряжение больного могут повлиять на результаты исследований липидного, углеводного обменов, общего белка, гормонов, факторов свертывания крови. Влияние характера питания, качественный состав пищи важен при исследовании активности ферментов. Известно более 130 ферментов, подверженных влиянию диеты. Биологические ритмы. Время взятия крови влияет на показатели исследования гемоглобина, мочевины, общих липидов. Содержание калия, общего белка, железа, билирубина может варьировать в течение часа. Сыворотка с признаками гемолиза. Влияние некоторых лекарств: исследуют содержание железа сыворотки на фоне приема препаратов железа, липидный обмен - на фоне гиполипидемической терапии. Лекарственные вещества также могут влиять, интерферируя с определенными реактивами в процессе исследования. Нет препаратов, не изменяющих лабораторные показатели, но не для всех установлен механизм действия. Например, на определение глюкозы влияет прием аскорбиновой кислоты, резерпина, кортикостероидов, эстрогенов, кофеина, тетрациклина и др. Перед исследованием ка-техоламинов за 2-3 дня должны быть исключены тетрациклины, резерпин, элениум, и др., а из пищевого рациона - бананы, сыр, крепкий чай, кофе. Нельзя проводить гематологические исследования после физиотерапевтических процедур и рентгеновского облучения; реакцию Вассерма-на - у лихорадящих больных, после приема алкоголя, наркоза, травм и хирургических вмешательств, приема наркотических препаратов и препаратов наперстянки. Нельзя исследовать активность кислой фосфатазы после массажа предстательной железы.
Упомянутые выше источники погрешностей не поддаются количественному контролю, который изложен в разделе, но ввиду трудности распознавания вскрывать их необходимо, регулярно инструктируя средний персонал отделений о правилах сбора и условиях хранения биологического материала для различных исследований.
Метод контрольных карт
Ежедневно работник лаборатории (лаборант, врач-лаборант) при проведении всех видов анализа, наряду с опытными пробами, исследует контрольный материал. Контроль должен охватывать практически каждое лабораторное исследование, результат которого имеет количественный или качественный характер. Определение содержания компонентов в контрольном материале проводят одновременно с исследованием опытных проб, при этом вместо сыворотки или плазмы крови берут контрольный материал в таком же количестве. Определение каждого компонента в контрольном материале проводят методом, применяемым в данной лаборатории. Результаты ежедневно регистрируются. В конце месяца (или другого срока, который предварительно или внезапно установлен начальником лаборатории или контрольным органом) проводится статистический анализ исследований контрольного материала с построением контрольной карты, расчетом среднеквадрати-ческого отклонения, ошибки средней величины, коэффициента вариации и сопоставление его с допустимым пределом ошибки. Статистический анализ исследований проводится также в особых случаях, а именно:
    если результаты исследования контрольного материала выходят за пределы ±2; при налаживании нового метода; при использовании новой измерительной аппаратуры, новой партии реактивов, новой серии контрольного материала и т.д.; при приеме на работу нового сотрудника. При анализе результатов наиболее удобным и распространенным является метод контрольных карт (метод Shewhart).
Согласно этому методу, в течение первых 20 дней следует проводить по 2 параллельных определения каждого компонента в контрольном материале. За результат принимают среднее арифметическое значение из 2-х параллельных определений. Если какое-нибудь значение существенно отличается от предыдущих, то его рассматривают как грубую ошибку. Из 20-ти ежедневных результатов вычисляется среднее значение:
Контроль работы приборов и оборудования
Применяемая в настоящее время широкая номенклатура лабораторных исследований требует использования самых разнообразных технических средств, и их перечень составляет десятки наименований. Вся лабораторная техника может быть подразделена на общую, необходимую для большинства исследований, и специальную, зависящую от вида выполняемых исследований. В общую лабораторную технику входит аппаратура для:
    дистилляции воды, взвешивания, центрифугирования, нагревания и термостатирования, перемешивания и встряхивания.
Специальная аппаратура составляет широкий перечень фотометров, анализаторов и др. приборов, выпускаемых различными фирмами. Для биохимических исследований применяются анализаторы открытого и закрытого типа. К закрытым относят системы, в которых используются реактивы фирмы-производителя, прописи их обычно не известны. Практически это все типы приборов, работающих на диагностических полосках. Открытые системы, напротив, характеризуются возможностью введения в компьютер всех необходимых параметров реакции, использования реактивов различных фирм, что является наиболее предпочтительным в эксплуатации. В гематологии в настоящее время получили широкое применение автоматические счетчики, позволяющие осуществить подсчет форменных элементов крови - эритроцитов, лейкоцитов, тромбоцитов, клеток костного мозга, а также средний объем эритроцитов, величину гематокрита, среднее содержание гемоглобина в одном эритроците, осуществить запись эритроцитометрической кривой. Наибольшее распространение получили приборы, основанные на кондуктоме-трическом принципе измерения
Принципы оценки качества измерительных приборов
Комплекс организационно-технических мероприятий, позволяющих контролировать технические и метрологические характеристики выпускаемых изделий, осуществляется на основе положения Государственной системы обеспечения единства измерений (ГСИ). Для вновь разработанных приборов и установок проводят государственные испытания. Для изделий, изготовленных серийно, проводят испытания на заводе-изготовителе при выпуске из производства или в тех случаях, когда изменяется конструкция, технология, материалы, влияющие на характеристики или на работоспособность прибора. Измерительные приборы, подлежат проверке в соответствии с ГОСТ 8002-71. В соответствии с руководством по метрологическому обеспечению средств измерений определен порядок и сроки проверки измерительных приборов в клинико-диагностических лабораториях. Измерительные приборы проверяются ведомственными метрологическими органами в соответствии с инструкцией, в которой указываются производимые операции и средства проверки. Проверке подлежат все технические и метрологические показатели, записанные в паспорте, прилагаемом к прибору. Работать на непроверенном приборе запрещается. Погрешность прибора входит в общую погрешность анализа. Погрешность анализа включает погрешности лаборанта, отбора пробы, дозирования, измерения и т.д. Составляющие погрешности анализа определяются конкретной технологией проведения исследования, его этапами. В связи с тем что проверочными средствами клинико-диагностические лаборатории не располагают, некоторые характеристики фотометрических абсорбциометров могут быть проверены с помощью контрольных светофильтров, входящих в комплект к прибору. Проверка может быть также осуществлена с помощью специально приготовленных растворов - жидких индикаторов, которые в определенной области спектра имеют постоянные спектральные характеристики. Жидкие индикаторы могут быть приготовлены непосредственно в лаборатории и позволяют проводить проверку точности измерений в различных областях спектра (от 300 до 550 нм). Пик абсорбции светофильтра должен находиться вблизи от пика абсорбции жидких индикаторов. Кроме того, приготовив соответствующие разведения данных растворов, можно проверить линейность данного абсорбциометра. Измерения проводятся в кювете с длиной оптического пути 10 мм. Таблица Спектральная характеристика контрольных растворов

Наименование раствора

Пик абсорбции, нм

Значения экстпнкций

Сульфат меди

Сульфат кобальта аммония

Хромат калия

Приготовление растворов по проверке спектральных характеристик фотометров
Сульфат меди в количестве 20 г растворить в 10 мл концентрированной серной кислоты, количественно перенести в мерную колбу на 1000 мл, довести объем при комнатной температуре до метки дистиллированной водой. Хранить в темной посуде. Сульфат кобальта аммония в количестве 14,481 г растворить в 10 мл концентрированной серной кислоты, перенести в мерную колбу на 1000 мл, после достижения комнатной температуры довести объем до метки дистиллированной водой. Хранить плотно закрытым в темной посуде. Хромат калияв количестве 40 мг растворить в 600 мл 0,05 н раствора КОН в мерной колбе на 1000 мл, довести объем до метки 0,05 н раствором КОН.
Контроль качества посуды
В общую составляющую лабораторной погрешности входит погрешность дозирования. Поэтому совершенно особой проблемой является проверка применяемых дозирующих и мерных средств на точность показаний. Из практики известно, что около 30-40% всей мерной посуды отбраковывается ввиду ее плохого качества. Оценка точности проводится на аналитических весах гравиметрическим способом: массу воды, составляющую объем дозирующего объекта, многократно (не менее 10 раз) взвешивают на аналитических весах. Переведя массовые единицы в объемные, рассчитывают погрешность мерного объема по следующей формуле:
  1. Техника лабораторных исследований

    Примерная программа

    Примерная программа учебной дисциплины разработана на основе Федерального государственного стандарта по специальности среднего профессионального образования 060105 Медико-профилактическое дело.

  2. О системе управления качеством и безопасностью медицинской деятельности в части контроля объемов, сроков, качества и условий предоставления медицинской помощи в Красноярском крае и внутреннего контроля (методические рекомендации)

    Методические рекомендации

    О системе управления качеством и безопасностью медицинской деятельности в части контроля объемов, сроков, качества и условий предоставления медицинской помощи в Красноярском крае и внутреннего контроля (методические рекомендации).

  3. Пояснительная записка

    Заведующая кафедрой клинической лабораторной диагностики учреждения образования «Гомельский государственный медицинский университет», доктор медицинских наук, профессор И.

  4. Квалификационные тесты по клинической лабораторной диагностике

    Тесты

    в) наука, помогающая выработке у врача способность к нравственной ориентации в сложных ситуациях, требующих высоких морально-деловых и социальных качеств

  5. «Лабораторная диагностика России» 2008/2009 Стандартизация в лабораторной медицине: цели, средства, внедрение

    Документ

    Основная задача клинической лаборатории состоит в том, чтобы на основании результатов исследования проб биожидкостей, экскретов или тканей человека дать объективную оценку состояния и содержания определенных компонентов его внутренней

Внутрилабораторный контроль качества выполнения измерений/испытаний, как и любая другая деятельность, начинается с планирования.

Начальным этапом планирования является анализ применяемых в лаборатории методик измерений, методов измерений/испытаний, определяемых показателей и объектов измерений/испытаний.

Результатом анализа должно быть выделение субдисциплин, представительных объектов измерений/испытаний и уровней измеряемых величин, которые будут воспроизводиться контрольными образцами, и составление плана внутрилабораторного контроля.

Понятие «субдисциплина» установлено в документе EA-4/18 TA:2010 «Руководство по уровню и частоте участия в проверках квалификации» (Guidance on the level and frequency of proficiency testing participation) и представляет область технической компетентности, определенную как минимум одним методом измерений/испытаний, свойством и продуктом, которые взаимосвязаны (например, определение мышьяка в почве методом ICP-MS).

Ближайшие семинары:

«Концепция нового стандарта ISO/IEC 17025:2017. Разработка, внедрение и поддержание систем менеджмента лабораторий» — 30-31 июля

Семинар проводится с целью оказания помощи лабораториям и консультантам по организации работ по пересмотру и доработке (разработке) документов систем менеджмента лабораторий в соответствии с требованиями новой версии стандарта ISO/IEC 17025:2017…

«Точность измерений в соответствии с СТБ ИСО 5725» — 13-14 августа

Установление показателей точности методик выполнения измерений является основным требованием при разработке (ГОСТ 8.010) и метрологическом подтверждении пригодности методик выполнения измерений (ТКП 8.006-2011). Международный подход к системе показателей точности и процедурам их оценивания изложен в СТБ ИСО 5725-2002 (части 1 – 6) «Точность (правильность и прецизионность) методов и результатов измерений». Правильное применение положений данного стандарта требует не только знания основных понятий, терминов и определений, но и хороших навыков в применении методов статистической обработки результатов измерений…

Субдисциплина может содержать более одного:

  • метода измерений/испытаний (в очень редких случаях),
  • определяемого показателя или
  • объекта измерений/испытаний

до тех пор, пока можно подтвердить эквивалентность и сопоставимость измерений/испытаний.

Что подразумевается под «эквивалентностью» и «сопоставимостью»?

Вернемся к тому, что основным процессом деятельности лаборатории является процесс измерений или испытаний, основным результатом или «продуктом» этой деятельности – результат измерения. К любой деятельности, к любому «продукту» предъявляются требования к качеству. Если говорить о методиках измерений определенных показателей в определенных объектах измерений/испытаний качество измерений/испытаний будет в первую очередь определяться системой показателей точности, а также другими рабочими характеристиками методики измерений.

Эквивалентность и сопоставимость измерений заключается в том, что метод измерений/испытаний или, в редких случаях, несколько методов измерений/испытаний будут одинаково себя проявлять и иметь одинаковые показатели точности в отношении одного или нескольких показателей и одного или нескольких объектов измерений/испытаний.

Если лаборатория использует методику измерений, описывающую метод ICP-MS для определения металлов в объектах окружающей среды, то для определения субдисциплин необходимо провести анализ реализации методики измерений различных металлов (например, кадмий Cd, свинец Pb, мышьяк As) на разных объектах (например, почва, вода, осадок сточных вод) с точки зрения эквивалентности показателей точности и сопоставимости проводимых измерений.

Например, если этапы реализации методики измерений одинаковы для всех определяемых показателей и контролируемых объектов (например, одинаковые пробоподготовка, процедура калибровки оборудования, аналитическое измерение), что подтверждается при валидации/верификации методики измерений и фиксируется в значениях показателей точности: прецизионности и правильности, то такую методику, показатели и объекты можно объединить в одну субдисциплину.

ВОЗМОЖНО ДЛЯ ВАС БУДЕТ ПОЛЕЗНО!

Предлагаем Вам посетить семинар по данной теме: «Контроль качества измерений в лабораториях: внутрилабораторный контроль и проверки квалификации»

В рассмотренном выше примере, поскольку подготовка проб воды отличается от подготовки проб почвы и осадка сточных вод, а принцип измерения металлов схож, на основании данных верификации методики измерений в лаборатории, можно выделить две субдисциплины:

  • определение содержания металлов методом ICP-MS в почве и осадке сточных вод;
  • определение содержания металлов методам ICP-MS в воде.

План внутрилабораторного контроля должен содержать следующую информацию:

  • наименование субдисциплины: метод измерений/испытаний или, в редком случае, методы измерений/испытаний; показатели и объекты измерений/испытаний, которые охватывает субдисциплина;
  • методики измерений, соответствующие субдисциплине (например, перечень методик измерений из области аккредитации);
  • контрольные образцы и реализуемые ими уровни измеряемых величин;
  • контролируемый показатель точности или другая рабочая характеристика методики измерений (повторяемость, лабораторное смещение, предел обнаружения и т.п.);
  • периодичность проведения внутрилабораторного контроля;
  • ответственный исполнитель за проведение внутрилабораторного контроля;
  • ссылка на конкретный способ внутрилабораторного контроля (например, контрольная карта средних арифметический, контрольная карта кумулятивных сумм, t-критерий, предел промежуточной прецизионности и т.п.).

В качестве контрольных образцов могут выбираться холостые пробы, стабильный внутрилабораторный материал, стандартные образцы и сертифицированные стандартные образцы, реальные контролируемые пробы. Основное требование – контрольные образцы по составу, матрице и уровню измеряемых величин должны быть по возможности максимально близки к реальным объектам измерений/испытаний.

Полезную информацию по теме Внутрилабораторного контроля вы можете получить из нашего обучающего видео:

Уровни измеряемых величин, воспроизводимые контрольными образцами, рекомендуется выбирать, опираясь на:

  • законодательные требования к допустимым значениям измеряемых величин (например, предельно допускаемое содержание вредных веществ);
  • наиболее часто встречающиеся значения из практики проведения измерений/испытаний конкретных объектов измерений/испытаний;
  • критические значения измеряемых величин, при которых рабочие характеристики методики измерений могут оказывать существенное влияние на качество проводимых измерений/испытаний и результатов измерений.

Перечень рабочих характеристик методики измерений, контролируемых при внутрилабораторном контроле, выбирается лабораторией на основании данных валидации/верификации методики измерений с учетом их значимого влияния на измерения/испытания и результат измерения. Обязательному контролю подвергаются показатели точности: прецизионность и лабораторное смещение (последний, только в случае возможности лабораторией установить опорное значении).

Частота анализа контрольного образца и реализации конкретной процедуры внутрилабораторного контроля в отношении контролируемой рабочей характеристики методики измерений устанавливается лабораторией в зависимости от:

  • объема анализируемых объектов измерений/испытаний в рамках конкретной субдисциплины (100 контролируемых объектов в день или 1 контролируемый объект в неделю);
  • уровня риска, обнаруживаемого лабораторией в области, в которой она работает, или в методологии, которую она использует (определение жирности в молоке или содержания ртути в пробе воды);
  • предыдущих результатов внутрилабораторного контроля (можно установить «плавающую» частоту, в зависимости от количества положительных или отрицательных результатов
  • предыдущего внутрилабораторного контроля);
  • любых законодательных требований по частоте реализации внутрилабораторного контроля;
  • степени применения других процедур контроля качества измерений/испытаний (например, участия в проверках квалификации).

План внутрилабораторного контроля, как правило, составляется на год.

Пример плана внутрилабораторного контроля представлен ниже в таблице.

Планирование, как и остальные этапы внутрилабораторного контроля, должно быть описано в документах системы менеджмента лаборатории. Любые изменения, вносимые в план внутрилабораторного контроля в течение срока его действия, должны документироваться.

Библиография

ГОСТ 27384-2002 Вода. Нормы погрешности измерений показателей состава и свойств.

ГОСТ 31870-2012 Вода питьевая. Определение содержания элементов методами атомной спектрометрии (п.5) ICP-MS вода.

ГОСТ ISO 22036-2014 Качество почвы. Определение микроэлементов в экстрактах почвы с использованием атомно-эмиссионной спектрометрии индуктивно связанной плазмы (ИСП-АЭС).

Внутрилабораторный контроль качества в клинико-диагностической лаборатории - комплекс мероприятий направленных на обеспечение качества клинических лабораторных исследований.

Организация внутрилабораторного контроля качества

Основными задачами КДЛ является проведение необходимых клинических лабораторных исследований и повышение их качества. Качество лабораторных исследований должно соответствовать требованиям по аналитической точности, установленным нормативными документами Минздрава России, что является обязательным условием надежной аналитической работы КДЛ. Важным элементом обеспечения качества является внутрилабораторный контроль качества, который состоит в постоянном (повседневном в каждой аналитической серии) проведении контрольных мероприятий: исследовании проб контрольных материалов или применении мер контроля с использованием проб пациентов. Целью внутрилабораторного контроля является оценка соответствия результатов исследований установленным критериям их приемлемости при максимальной вероятности погрешности и минимальной вероятности ложного отбрасывания результатов выполненных лабораторией аналитических серий.

Внутрилабораторный контроль качества обязателен в отношении всех видов исследований, выполняемых в лаборатории. Правила внутрилабораторного контроля качества количественных исследований содержатся в Приказе МЗ РФ №45 от 07.02.2000 «О системе мер по повышению качества клинических лабораторных исследований в учреждениях здравоохранения Российской Федерации». При проведении контроля качества лабораторных исследований используются следующие термины:
Точность измерений - качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответствует малым погрешностям всех видов, как систематических, так и случайных.
Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.
Систематическая погрешность измерения - составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины.
Правильность измерений - качество измерений, отражающее близость к нулю систематических погрешностей в их результатах.
Случайная погрешность измерения - составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины.
Аналитическая серия - совокупность измерений лабораторного показателя, выполненных единовременно в одних и тех же условиях без перенастройки и калибровки аналитической системы.
Внутрисерийная воспроизводимость - качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одной и той же аналитической серии.
Межсерийная воспроизводимость - качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в разных аналитических сериях.
Общая воспроизводимость - качество измерений, отражающее близость друг к другу результатов всех измерений.
Установленное значение - метод-зависимое значение определяемого показателя, указываемое изготовителем контрольного материала в паспорте или инструкции.
Источниками погрешностей, выявляемых системой внутрилабораторного контроля качества, могут быть внутренние (лабораторные) и внешние факторы. К внешним факторам относятся принцип аналитического метода, качество приборов и реактивов, калибровочных средств. К внутренним - несоблюдение условий, установленных методикой проведения аналитического исследования: времени, температуры, объемов, правил приготовления и хранения реактивов.

В зависимости от характера влияния на результаты аналитического исследования различают систематические и случайные погрешности, которые выявляются с помощью многократного исследования контрольного материала в аналитических сериях. Систематическая погрешность характеризует правильность измерений, которая определяется степенью совпадения среднего результата повторных измерений контрольного материала (Х) и установленного значения измеряемой величины. Разность между ними называется смещением и может быть выражена в абсолютных или относительных величинах и рассчитывается в процентах по формуле:
В= ((Х – УЗ)/УЗ) х 100 %, где Х - среднее значение измерений контрольного материала, У3 - установленное значение.

Случайная погрешность отражает разброс измерений и проявляется в различии между собой результатов повторных измерений определяемого показателя в одной и той же пробе. Математически величина случайной погрешности выражается среднеквадратическим отклонением (S) и коэффициентом вариации (CV).

Внутрилабораторный контроль качества включает контроль воспроизводимости и точности (правильности) и может осуществляться с помощью методов, использующих специальные контрольные материалы или средства ряда методов, не требующих контрольных материалов. Методы, использующие контрольные материалы: метод контрольных карт; метод «Сизит»; метод контрольных правил Westgard. Методы, использующие данные пациентов:
Метод параллельных проб.
Метод средней нормальных величин («средней нормы»).
Исследование случайной пробы.
Исследование повторных проб.
Исследование смешанной пробы.

Метод контрольных карт. Ежедневно работник лаборатории при проведении всех видов анализа наряду с опытными пробами исследует контрольный материал. Определение содержания компонентов в контрольном материале проводят одновременно с исследованием опытных проб, при этом вместо сыворотки или плазмы крови берут контрольный материал в таком же количестве. Контрольные материалы могут быть приготовлены в лаборатории самостоятельно (сливные сыворотки) или закуплены у фирм - коммерческие контрольные материалы. В свою очередь, коммерческие сыворотки могут быть аттестованными (с известным содержанием компонентов) и неаттестованными (с неизвестным содержанием компонентов). Неаттестованные контрольные сыворотки в первую очередь используются для контроля воспроизводимости, а аттестованные - правильности.

Определение каждого компонента в контрольном материале проводят методом, применяемым в данной лаборатории. Результаты ежедневно регистрируются. Для аттестованных контрольных материалов по 20-ти результатам, полученным в 20 выполненных сериях, рассчитывают:
среднюю арифметическую Х;
среднее квадратическое отклонение S;
коэффициент вариации CV;
величину относительного смещения В.

Если используют неаттестованный материал или сливные сыворотки, по полученным результатам рассчитывают X, S и CV. Проверяют, что полученные значения В и CV не превышают их предельно допустимых значений. Если это условие выполняется, делают вывод о возможности использования рассматриваемой методики для целей лабораторной диагностики и переходят к построению контрольных карт. В случае превышения одним из полученных значений В или CV соответствующих предельно допустимых значений проводят дополнительную работу по устранению источников повышенного смещения или вариации или избирают другую методику определения данного показателя.

Контрольная карта представляет собой график, на оси абсцисс которого откладывают номер аналитической серии (или дату ее выполнения), а на оси ординат - значения определяемого показателя в контрольном материале. Через середину оси ординат проводят линию, соответствующую средней арифметической величине X, и параллельно этой линии отмечают линии, соответствующие контрольным пределам:
X ± 1S
X ± 2S
X ± 3S

С использованием построенных контрольных карт осуществляют оперативный («текущий») контроль качества результатов определения исследуемого показателя. С этой целью в каждой аналитической серии проводится по одному измерению в каждом из двух контрольных материалов (N и P); или два измерения в одном и том же контрольном материале, если используется единственный материал (в последнем случае на контрольную карту наносят по две точки на серию).

Оценку результатов исследования контрольных материалов проводят с использованием контрольных правил Westgard:
1 2S - если один из результатов анализа контрольных материалов выходит за пределы (х±2S), то проверяется последовательно наличие всех нижеследующих признаков, и аналитическая серия признается неудовлетворительной, если присутствует хотя бы один из них;
1 3S - одно из контрольных измерений выходит за пределы (х±3S);
2 2S - два последних контрольных измерения превышают предел (х+2S) или лежат ниже предела (Х-2S);
R 4S - два контрольных измерения в рассматриваемой аналитической серии расположены по разные стороны от коридора х±2S (не применяется к одному измерению в серии единственного контрольного материала);
4 1S - четыре последних контрольных измерений превышают (х+1S) или лежат ниже (х-1S);
10 X - десять последних контрольных измерений располагаются по одну сторону от линии, соответствующей X.

Появление контрольных признаков 1 3S и R 4S свидетельствует об увеличении случайных ошибок, в то время как признаки 2 2S , 4 1S , I0 X - об увеличении систематической ошибки методики. После устранения причин появления повышенных погрешностей все пробы, проанализированные в этой серии (и пациентов, и контрольные), исследуют повторно. Методы, использующие контрольные материалы, наиболее широко применяются для контроля ачества в КДЛ. Однако эти методы не выявляют ошибку в целом.

Контроль по ежедневным средним. Для многих исследований в качестве дополнительного можно рекомендовать контроль по ежедневным средним, в котором используются образцы или результаты исследования образцов пациентов . Условия, необходимые для внедрения метода: число проб пациентов, исследуемых ежедневно, должно быть достаточным для статистической достоверности данных (30 и более, значение этого числа зависит от анализируемого компонента); контингент обследуемых лабораторией пациентов должен быть достаточно однородным (по патологии , полу , возрасту); число усредняемых результатов должно быть примерно одинаковым, и оно зависит от анализируемого компонента.

Последовательность процедур:
Ежедневно из полученных в течение дня результатов проводится рассчет ежедневной средней арифметической величины (х), и эта процедура повторяется в течение 20 дней.
Даже из 20 ежедневных средних проводится расчет общего среднего х общ. и среднего квадратичного отклонения (S).
Рассчитываются контрольные пределы (X ОБЩ. ± 1S, Х ОБЩ. ± 2S, Х ОБЩ. ± 3S) и строится контрольная карта.
После построения контрольной карты в лаборатории ежедневно рассчитывается х из всех результатов каждого анализируемого показателя, и полученное значение наносится на карту в виде точки.

Анализ контрольной карты проводится по правилам Westgard.

Метод контроля воспроизводимости по дубликатам. Принцип данного метода внутрилабораторного контроля качества состоит в проведении двух параллельных исследований определяемого показателя в выбранной наугад пробе пациента, нахождении величины относительного размаха (R i , %) между первым значением показателя (Х 1) и вторым (Х 2) и сравнении ее с установленными контрольными пределами. Последовательность процедур:
определить уровень определяемого показателя в выбранной наугад пробе пациента дважды в течение одной аналитической серии;
рассчитать величину относительного размаха между двумя определениями по формуле:
R i = ((2 х (X 1 - X 2))/(X 1 + X 2)) х 100 %, где (Х 1 –Х 2) - разница между результатами определения по абсолютному значению;
повторить описанную процедуру в 20 аналитических сериях;
из полученных 20 значений (R 1, 2, 3..., 20) рассчитать среднее арифметическое значение R:

Далее рассчитывают контрольные пределы, умножая полученное значение R на коэффициенты, соответствующие 95% и 99% квантилям распределения размахов: для 95%-ной контрольной границы - 2,46; для 99%-ной контрольной границы - 3,23. Исходя из полученных контрольных пределов строится контрольная карта, где на оси абсцисс откладывается нулевая линия (она будет соответствовать нулевому размаху), на которой отмечается номер аналитической серии, а параллельно ей в удобном масштабе проводят линии, соответствующие R и контрольным границам 95% и 99%. На оси ординат отмечают уровень определяемого показателя. Далее, в каждой аналитической серии проводится параллельное исследование определяемого показателя в выбранной наугад пробе пациента. Пробы, предназначенные для параллельного исследования, должны располагаться случайным образом по длине аналитической серии. Полученное значение относительного размаха сравнивается с контрольными границами. Если хоть одно полученное значение выходит за контрольную границу, соответствующую 99% (контрольный признак «1 R99 », или если два последовательных значения выходят за контрольную границу «95% (контрольный признак «2 R9S »), то такая аналитическая серия считается непригодной, исследование проводится повторно.

Исследование смешанной пробы. При оценке воспроизводимости методом параллельных проб получают более близкие значения, чем обычно получают при наличии случайных ошибок. В методе смешанной пробы это исключено. Метод заключается в следующем: из группы образцов случайно выбирают два (А и В); из каждого образца А и В берут равные объемы и смешивают (образец С); исследуют все три образца, вычисляют теоретическое содержание компонента в образце С((А+В)/2) и различие между теоретическим и исследованным содержанием ((А+В)/2–С). Для построения контрольной карты по этому методу следует проводить исследование в течение 40 дней. Затем рассчитывают среднюю отклонения (d ср.) для единичных анализов путем сложения всех различий (опуская знаки) и деления на 40. Затем готовят контрольную карту, на которой чертят три прямых: 50% прямая составляет 0,845 dCP; 95% прямая составляет 2,5 dCP; 99,5% прямая составляет 3,5 dCP.

В дальнейшем ежедневно готовят смешанную пробу и результат отмечают на карте. Каждая точка представляет собой различие между теоретической величиной, рассчитанной как среднее двух проб, и действительной величиной, полученной исследованием смешанной пробы. Если много точек располагается выше прямых 95% и 99,5%, необходимо провести соответствующие мероприятия для выявления возможных источников ошибок.

Особенности контроля качества гематологических исследований

В связи со спецификой гематологических исследований контроль качества их предполагает наличие определенных контрольных средств и материалов, которые не используются в других видах лабораторных исследований. Для контроля качества определения содержания гемоглобина используются стандартные растворы гемиглобинцианида с известным содержанием Нb и специальные контрольные растворы (донорская кровь, лизированная кровь и консервированная кровь). Стандартный раствор гемиглобинцианида применяют для контроля правильности работы фотометров и построения калибровочной кривой в гемиглобинцианидном методе определения Нb в крови. Для контроля воспроизводимости определения Нb применяется раствор лизированной крови (гемолизат). Для приготовления гемолизатов используют: консервированную человеческую цитратную кровь, можно с истекшим сроком годности; консервированную лошадиную кровь; донорскую человеческую кровь, свежую, собранную в сосуд с 0,6 моль/л раствором лимоннокислого натрия из расчета 1:5.

200 мл полученной цитратной крови центрифугируют при 3000 об/мин в течение 30 мин. Плазму сливают, к эритроцитам добавляют 100 мл стерильной дистилированной воды и тщательно перемешивают на магнитной мешалке в течение 30 мин. Раствор помещают в холодильник при -20 градусах на 24 часа. На следующий день раствор размораживают и вновь тщательно перемешивают в течение 30 мин.

Затем раствор фильтруют в асептических условиях через стеклянный фильтр Millipore (соответствует №4 - с величиной пор 4–10 мкм) и разливают в стерильные пузырьки по 1 мл. Хранят раствор в холодильнике, оптимальная t = –20°С. Стабилен 1 год. Для оценки воспроизводимости определения концентрации Нb гемолизат исследуют в течение 20 дней, из полученных данных рассчитывают XСР, S, CV, контрольные пределы (X± 2S) и строят контрольную карту. Коэффициент вариации не должен превышать 5%.

Для контроля правильности используют контрольную кровь с известным содержанием гемоглобина. Контрольная кровь исследуется так же, как обычные пробы пациентов, т. е. в тех же случаях и в тех же условиях. Результаты исследования Нb в контрольной крови сравнивают с паспортными значениями, указанными в инструкции производителя, и рассчитывают смещение В. Оно не должно быть более 4%.

Для контроля качества подсчета клеток крови применяют следующие контрольные материалы: консервированная или стабилизированная кровь; фиксированные клетки крови (суспензии); контрольные мазки крови. Контроль качества определения эритроцитов осуществляется по принципу опосредованного контроля методом контрольных карт. В течение 2-х дней проводят 20 определений количества эритроцитов в консервированной крови, рассчитывают контрольные пределы и строят контрольную карту. Коэффициент вариации при подсчете эритроцитов в контрольном материале не должен превышать 5%.

Для контроля качества подсчета лейкоцитарной формулы в мазках крови используются контрольные мазки. Они готовятся из капиллярной крови доноров и больных обычным способом. Затем контрольные мазки многократно просчитываются (не менее 20 раз) по 200 клеток квалифицированными специалистами (не менее 5 человек). Из полученных данных статистически рассчитываются критерии определения правильности подсчета мазка путем рассчета X и S. Для увеличения срока хранения мазка используют клей БФ-6, образующий тонкую прозрачную пленку, герметически приклеивающуюся к поверхности мазка и стекла и предохраняющую мазок от воздействия окружающей среды. Подсчет лейкоформулы считается правильным, если результаты подсчета клеток входят в рассчитанные контрольные границы (X ± 2S) для каждого вида клеток крови.

Контроль качества исследований крови

Степень точности получаемых результатов исследований мочи в основном зависит от квалификации лаборанта, используемого оборудования, реактивов и метода исследования. Для получения правильных и воспроизводимых результатов исследования химического состава мечи используют контрольные материалы, близкие, по возможности, к образцам мочи пациентов, и контрольные мазки для контроля качества микроскопических исследований осадка мочи. В качестве контрольных материалов для контроля химического состава мочи используют: водные растворы веществ; слитую мочу с консервантами; искусственные растворы мочи с добавками веществ, исследуемых в моче.

На контрольных материалах проверяют методы, обычно применяемые в лаборатории для качественного и количественного исследования химического состава мочи. Водные растворы веществ с известным содержанием используются для контроля качества исследований химического состава мочи (например, раствор глюкозы , ацетона, альбумина). Для приготовления водных растворов используют дистиллированную воду, соответствующую ГОСТ 6709-72, и реактивы квалификации хч и чда.

Водные растворы хранят в холодильнике в течение 1 месяца. Для контроля качества исследований химического состава мочи можно использовать слитую мочу, приготовленную в лаборатории. К 1 л свежей человеческой мочи добавляют 2 г ЭДТА и при энергичном встряхивании и перемешивании флакона приливают 5 мл раствора тимола. Через 2 недели мочу центрифугируют для удаления слизи и незначительного количества мочевой кислоты. После такой обработки моча становится прозрачной и почти не имеет запаха.

Контрольный материал хранят при комнатной температуре. Срок годности - несколько лет. Слитая моча используется для контроля воспроизводимости.

Для контроля качества диагностических полосок используются контрольные растворы, имитирующие мочу. Способ приготовления: в мерную колбу на 500 мл с 200 мл дистиллированной воды добавляют 5 мл глюкозы (для инъекций внутривенно), 2 мл ацетона (ч, чда), 25 мл слитой человеческой сыворотки и 0,1 мл лизированной крови (к 0,1мл цельной крови добавляют 01 мл дистиллированной воды для лизиса эритроцитов). Тщательно перемешивают и доводят объем до метки физиологическим раствором. Используя 0,1 М НС1, величину рН доводят до 6,0. Контрольный раствор хранится в холодильнике не более одного месяца.

Контроль качества коагулологических исследований

Контроль качества коагулологических исследований имеет свои особенности, связанные, прежде всего, с характером методических принципов, которые применяются для исследования параметров свертывающей системы и фибринолиза и основаны, главным образом, на определении конечной точки образования фибрина, а также с видом используемых реактивов. Для контроля коагулологических исследований применяют:
Смешанную свежую плазму от большого количества доноров (не менее 20 человек).
Стандартную человеческую лиофилизированную плазму (пул) для калибровки.
Контрольную человеческую плазму с точным содержанием факторов свертывания (нормальным и патологическим).
Контрольную плазму с дефицитом индивидуальных факторов свертывания.
Контрольную плазму для контроля верхней и нижней границы терапевтической области при приеме антикоагулянтов.

В качестве основного контрольного материала используют слитую, только цитратную плазму с нормальным и пролонгированным временем свертывания. Способ приготовления слитой плазмы: свежую плазму, взятую с 3,8%-м раствором цитрата натрия, собирают от нескольких доноров, смешивают и разливают во флаконы. Быстро замораживают. Основное требование к плазме - отсутствие в ней следов гемолиза и эритроцитов.

Контрольную плазму каждый день размораживают и используют в начале работы и через каждые 20 проб. Рекомендуют использовать не менее одной порции плазмы с пролонгированным временем свертывания. Каждая проба и контрольная плазма исследуются параллельно. Если разница между параллелями больше 3 сек., то тест должен быть повторен со свежей пробой от пациента.

Контроль качества исследований мочи

Степень точности получаемых результатов исследований мочи в основном зависит от квалификации лаборанта, используемого оборудования, реактивов и метода исследования. Для получения правильных и воспроизводимых результатов исследования химического состава мочи используют контрольные материалы, близкие, по возможности, к образцам мочи пациентов, и контрольные мазки для контроля качества микроскопических исследований осадка мочи. В качестве контрольных материалов для контроля химического состава мочи используют: водные растворы веществ; слитую мочу с консервантами; искусственные растворы мочи с добавками веществ, исследуемых в моче.

На контрольных материалах проверяют методы, обычно применяемые в лаборатории для качественного и количественного исследования химического состава мочи. Водные растворы веществ с известным содержанием используются для контроля качества исследований химического состава мочи (например, раствор глюкозы, ацетона, альбумина). Для приготовления водных растворов используют дистиллированную воду, соответствующую ГОСТ 6709–72, и реактивы квалификации хч и чда. Водные растворы хранят в холодильнике в течение 1 месяца. Для контроля качества исследований химического состава мочи можно использовать слитую мочу, приготовленную в лаборатории.

К 1 л свежей человеческой мочи добавляют 2 г ЭДТА и при энергичном встряхивании и перемешивании флакона приливают 5 мл раствора тимола. Через 2 недели мочу центрифугируют для удаления слизи и незначительного количества мочевой кислоты. После такой обработки моча становится прозрачной и почти не имеет запаха.

Контрольный материал хранят при комнатной температуре. Срок годности - несколько лет. Слитая моча используется для контроля воспроизводимости. Для контроля качества диагностических полосок используются контрольные растворы, имитирующие мочу.

Способ приготовления: в мерную колбу на 500 мл с 200 мл дистиллированной воды добавляют 5 мл глюкозы (для инъекций в/в), 2 мл ацетона (ч, чдa), 25 мл слитой человеческой сыворотки и 0,1 мл лизированной крови (к 0,1 мл цельной крови добавляют 0,1 мл дистиллированной воды для лизиса эритроцитов). Тщательно перемешивают и доводят объем до метки физиологическим раствором. Используя 0,1 М НСl, величину рН доводят до 6,0. Контрольный раствор хранится в холодильнике не более одного месяца.

Оценка качества работы лаборанта

Оценка качества работы лаборанта должна быть частью программы внутрилабораторного контроля качества. Оценить технику работы лаборантов можно при помощи следующих методов:
Метод, использующий результаты внешней оценки качества.
Метод случайных проб.
Метод разведения проб.
Метод дублирования анализов.
Метод, использующий результаты внутрилабораторного контроля качества.

Если лаборант выполнил 20 или более анализов, то его работу оценить легко, если истинная величина проб известна. Среднеквадратическое отклонение лаборатории можно рассматривать как оценку способности производить правильные анализы каждым лаборантом при расчете средней всех стандартных отклонений для всех тестов. Эта средняя может быть названа комбинированным среднеквадратическим отклонением (KS).

Величину KS рассчитывают за определенный отрезок времени (полгода, год) для каждого лаборанта и дают грубую оценку аналитической способности каждого. Вначале откладываются результаты анализов контрольных материалов за определенный промежуток времени, идентифицируется каждый тест с именем лаборанта, который его выполнял. После истечения установленного срока готовятся оценочные листы для каждого лаборанта. На оценочном листе регистрируют название теста, полученный лаборантом результат, истинное значение и среднеквадратическое отклонение. Из этих величин рассчитывают разницу между истинной величиной и полученной лаборантом, и делят ее на среднеквадратическое отклонение, например: при исследовании гемоглобина крови лаборантом получено значение 163 г/л, X ср.=162 г/л; S=2, т.о. KS = (163-162)/2 = 0,5.

Чем ниже KS, тем лучше работа лаборанта. Данную величину можно использовать для ранжирования лаборантов по качеству работы: так, при KS:
0–0,5 - отлично;
0,5–1,0 - хорошо;
1,0–1,5 - удовлетворительно;
1,5–2,0 - плохо;
выше 2,0 - очень плохо.

Этот метод трудно применить в полностью автоматизированных лабораториях. Для сравнения качества работы лаборантов можно использовать результаты метода дублирования проб, метод разведения. Их недостатком является то, что их можно использовать только для оценки качества работы лаборантов, но не для ранжирования.

Автоматизация ведения внутилабораторного контроля качества

Ведение внутрилабораторного контроля качества в полном объеме для всех выполняемых в КДЛ исследований требует значительных затрат труда, времени и средств. Снижение этих затрат возможно только при автоматизации контроля качества с использованием персонального компьютера и программного обеспечения. Важно и то, что получаемые с помощью программы результаты обладают высокой достоверностью, т. к. уменьшается число ошибок, допускаемых при ручном ведении контроля. Единственное, что требуется от персонала КДЛ в качестве рутинной работы, - вводить в программу результаты измерений контрольного материала или проб пациентов.

Контроль работы приборов, оборудования и качества посуды

Применяемая в настоящее время широкая номенклатура лабораторных исследований требует использования самых разнообразных технических средств, и их перечень составляет десятки наименований. Комплекс организационно-технических мероприятий, позволяющих контролировать технические и метрологические характеристики выпускаемых изделий, осуществляется на основе Положения Государственной системы обеспечения единства измерений (ГСИ).

Измерительные приборы подлежат поверке в соответствии с ГОСТ 8002–71. В соответствии с руководством по метрологическому обеспечению средств измерений определен порядок и сроки поверки измерительных приборов в КДЛ. Измерительные приборы поверяются ведомственными метрологическими органами в соответствии с инструкцией, в которой указываются производимые операции и средства поверки. Поверке подлежат все технические и метрологические показатели, записанные в паспорте, прилагаемом к прибору. Работать на непроверенном приборе запрещается. Погрешность прибора входит в общую погрешность анализа. Погрешность анализа включает погрешности лаборанта, отбора пробы, дозирования, измерения.

В связи с тем, что поверочными средствами КДЛ не располагают, некоторые характеристики фотометрических абсорбциометров могут быть проверены с помощью контрольных светофильтров, входящих в комплект к прибору. Проверка может быть также осуществлена с помощью специально приготовленных растворов - жидких индикаторов, которые в определенной области спектра имеют постоянные спектральные характеристики. Жидкие индикаторы могут быть приготовлены непосредственно в КДЛ и позволяют проводить проверку точности измерений в различных областях спектра (от 300 до 550 нм). Пик абсорбции светофильтра должен находиться вблизи от пика абсорбции жидких индикаторов. Кроме того, приготовив соответствующие разведения данных растворов, можно проверить липидность данного прибора. Измерения проводятся в кювете с длиной оптического пути 10 мм.

Приготовление растворов по проверке спектральных характеристик фотометров

Сульфат меди в количестве 20 г растворить в 10 мл концентрированной серной кислоты, количественно перенести в мерную колбу на 100 мл, после достижения комнатной температуры довести объем до метки дистиллированной водой. Хранить в темной посуде. Сульфат кобальта аммония в количестве 14,481 г растворить в 10 мл концентрированной серной кислоты, перенести в мерную колбу на 100 мл, довести объем при комнатной температуре до метки дистиллированной водой. Хранить плотно закрытым в темной посуде. Хромат калия в количестве 40 мг растворить в 600 мл 0,05 Н раствора КОН в мерной колбе на 100 мл, довести объем до метки 0,05 Н раствором КОН.

В общую составляющую лабораторной погрешности входит погрешность дозирования. Поэтому совершенно особой проблемой является проверка применяемых дозирующих и мерных средств на точность показаний. Из практики известно, что около 30-40% всей мерной посуды отбраковывается ввиду ее погрешность мерного объема по следующей формуле:((исходный объем – полученный объем) / исходный объем) х 100%.

Результат, выраженный в %, не должен превышать: для 20 мкл - 3%, для 100–200 мкл - 1%, для 1 000–2 000 мкл - 0,3%. В каждой лаборатории необхоплохого качества. Оценка точности проводится на аналитических весах гравиметрическим способом: массу воды, составляющую объем дозирующего объекта, многократно (не менее 10 раз) взвешивают на аналитических весах. Переведя массовые единицы в объемные, рассчитывают димо разработать и внедрить программу контроля качества используемого оборудования, которая включает проверку и регистрацию состояния холодильников, водяных бань, термостатов, пипеток, таймеров, а также контроль качества дистиллированной воды (чистота, величина рН).

Одним из критериев аккредитации лабораторий, установленных Приказом Минэкономразвития РФ №682, является: «19.11 наличие правил управления качеством результатов исследований (испытаний) и измерений, в том числе правил планирования и анализа результатов контроля качества исследований (испытаний) и измерений»

Компания ЛАБВЭА всегда учитывает потребности Заказчиков, и совместно со специалистами «Уральского научно-исследовательского института метрологии» было разработано решение, обеспечивающее возможность выполнения внутрилабораторного контроля качества измерений (ВЛК) в соответствии с требованиями нормативной документации.

Кратко о ВЛК:

Внутрилабораторный контроль качества измерений (ВЛК) - комплекс мероприятий по обеспечению качества лабораторных исследований, которые позволяют гарантировать и контролировать соответствие метрологических характеристик измерений предъявляемым требованиям, и выполняются лабораторией самостоятельно.

Мероприятия направлены на оценку надежности получаемых результатов, которые выдает лаборатория, а также на устранения причин неудовлетворительных параметров полученных результатов.

ВЛК необходим при выполнении сложных измерений, предполагающих многостадийные методики с большой долей ручного труда. Недостаточно контролировать условия измерений, требуется контролировать также сам результат. Поэтому ВЛК необходим для лабораторий, систематически выполняющих однотипные рутинные анализы, а также в научных исследованиях, для обеспечения лучшей сопоставимости результатов, получаемых в разное время.

В России существует множество нормативных документов и стандартов по ВЛК. Все они носят рекомендательный характер и зависят от области деятельности и специфики лаборатории.

Следует отметить, что рекомендации по ВЛК довольно быстро устаревают и те, которые были актуальными 10 лет назад, сейчас устарели и более не используются. Изменения обычно связаны с неудобствами и большим количеством мнений и точек зрения.

На данный момент времени основным документом по ВЛК в России является стандарт РМГ 76-2014 (Внутренний контроль качества результатов количественного химического анализа). Информация об изменениях рекомендаций и текст изменений публикуется в ежегодном информационном указателе «Национальные стандарты».

Виды контроля:

Оперативный контроль процедуры анализа

Контроль стабильности результатов анализа с использованием контрольных карт

  • контроль погрешности с применением образца контроля;
  • контроль погрешности с применением метода добавок;
  • контроль погрешности с применением метода разбавления;
  • контроль погрешности с применением метода добавок совместно с методом разбавления пробы;
  • контроль погрешности с применением метода варьирования навески;
  • контроль погрешности с применением контрольной методики анализа;
  • контроль погрешности при помощи Карты куммулятивных сумм;
  • контроль повторяемости (сходимости);
  • контроль прецизионности (воспроизводимости).

Контроль стабильности результатов анализа в форме периодической проверки подконтрольности процедуры выполнения анализа

  • с применением образца контроля;
  • с применением метода добавок с использованием одной рабочей пробы;
  • с применением метода добавок с использованием нескольких рабочих проб (если показатели качества результатов анализа заданы в единицах измеряемых содержаний);
  • с применением метода добавок с использованием нескольких рабочих проб (если показатели качества результатов анализа заданы в относительных единицах для всего диапазона измерений);
  • с применением метода разбавления с использованием нескольких рабочих проб.

Контроль стабильности результатов анализа в форме выборочного статистического контроля внутрилабораторной прецизионности и точности результатов анализа

Шаблонное решение ВЛК:

В шаблонном решении ВЛК реализованы все виды контроля, описанные выше. Это решение является конфигурируемым, т.е. может изменяться под определенные требования лаборатории.

Шаблонное решение является гибким и имеет возможность внесения изменений как в существующие так и добавление новых видов контроля, согласно нормативной документации и с учетом специфики подхода к выполнению процедуры анализа и наличия утвержденных отчетных форм. Усовершенствование данного шаблонного решения может проводиться силами ЛИМС-администраторов предприятия без привлечения консультантов ЛАБВЭА.

Список функциональных возможностей шаблонного решения ВЛК:

  • Оперативный контроль процедуры анализа, с построением отчетных форм
  • Контроль стабильности результатов анализа с построением карт Шухарта и выводом отчетных форм
  • Контроль стабильности результатов анализа в форме периодической проверки подконтрольности процедуры выполнения анализа
  • Контроль стабильности результатов анализа в форме выборочного статистического контроля внутрилабораторной прецизионности или точности результатов анализа
  • Контроль правильности коэффициентов контрольных процедур (коэффициент разбавления, концентрация добавки)
  • Использование для контроля стабильности ГСО и контрольных проб
  • Использование метрологических характеристик ГСО
  • Использование метрологических характеристик, настроенных в методике анализа
  • Использование метрологических характеристик заданных вручную
  • Расчет метрологических характеристик методом линейной интерполяции
  • Использование образцов, анализы которых уже произведены и присутствуют в системе
  • Использование образцов, предназначенных только для ВЛК и не участвующих в других процессах системы
  • Использование шифрования образцов
  • Выбор определенных методик и элементов образцов для ВЛК
  • Возможность получения результатов для ВЛК из экспериментов ELN

Заключение:

Шаблонное решение ВЛК охватывает все алгоритмы и виды контроля, описанные в РМГ 76. Пользовательский интерфейс тщательно продуман и настроен в соответствии с последовательностью действий, выполняемых пользователем. Данное шаблонное решение включает в себя набор отчетных форм, аттестованных на соответствие РМГ 76 и ГОСТ 5725, но в тоже время может быть дополнено отчетными формами, утвержденными на предприятии.
В пакет шаблонного решения входит набор документации: руководство по установке, описание структуры и руководства пользователей по видам контроля.

Гибкость шаблонного решения позволяет без проблем вносить изменения в алгоритмы с учетом выхода новых рекомендаций по ВЛК. Функционал шаблонного решения может быть легко ограничен только теми видами контроля и алгоритмами ВЛК, которые в действительности используются на предприятии.