Поправка ван дер ваальса для воздуха. Силы ван-дер-ваальса. Приведенное уравнение состояния

Открыты Я. Д. Ван дер Ваальсом в 1869 году .

Вандерваальсовы силы межатомного взаимодействия инертных газов обусловливают возможность существования агрегатных состояний инертных газов (газ , жидкость и твёрдые тела).

К вандерваальсовым силам относятся взаимодействия между диполями (постоянными и наведёнными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса . Эти взаимодействия, а также водородные связи , определяют формирование пространственной структуры биологических макромолекул.

Вандерваальсовы силы также возникают между частицей (макроскопической частицей или наночастицей) и молекулой и между двумя частицами .

Энциклопедичный YouTube

    1 / 3

    ✪ Силы Ван-дер-Ваальса | Силы межмолекулярного взаимодействия | Химия (видео 1)

    ✪ Урок 194. Уравнение Ван-дер-Ваальса

    ✪ Уравнение Ван-дер-Ваальса | Газы.Молекулярно-кинетическая теория | Химия (видео 8)

    Субтитры

    В нашем путешествии по химии, мы уже сталкивались с взаимодействиями между молекулами, с металлическими связями, которые образуются с помощью электронов, рассматривали взаимодействия между молекулами воды. Думаю, будет полезно рассмотреть разные типы межмолекулярных взаимодействий и их влияние на температуру кипения и плавления веществ. Начнем с самых слабых взаимодействий. Для примера возьмем гелий. Нарисую несколько атомов гелия. Давайте посмотрим в периодическую таблицу Менделеева, вместо гелия можно взять любой благородный газ. Благородным газам, можно сказать, повезло – их внешняя орбиталь полностью заполнена. Итак, неон или гелий… Давайте возьмем неон, у него на орбитали есть все восемь электронов. Неон записывается вот таким образом. И ему ничего не нужно. Он полностью доволен жизнью. И так как ему очень хорошо в таком состоянии, он инертен. У него нет причин быть активным. Об этих причинах мы еще поговорим. Электроны распределены вокруг атома равномерно. Это абсолютно нейтральный атом. Он не стремится образовать связь с другим атомом. Итак, электроны рассеяны вокруг атома и они не будут притягиваться и как-то взаимодействовать друг с другом. Но, оказывается, при пониженной температуре неон переходит в жидкое состояние, и сам факт этого означает, что возникают какие-то силы, и из-за них атомы неона присоединяются друг к другу. Это происходит при очень низкой температуре, потому что силы эти очень слабы. Поэтому в основном неон находится в состоянии газа. Но если его сильно охладить, возникают очень слабые силы и атомы или молекулы неона соединяются друг с другом. Эти силы возникают из-за того, что у электрона нет постоянной траектории движения вокруг ядра. Траектория вероятностная. Давайте возьмем неон, я не буду рисовать валентные электроны в таком виде, вместо этого я нарисую облако вероятности нахождения электрона в пространстве. Это конфигурация атома неона. Итак, 1s2, а 2s2, 2p6 – это внешний слой, да? В этом состоянии у электрона самая большая энергия. Как бы это нарисовать... У него есть 2s уровень. 1s-уровень находится внутри, еще в атоме есть p-орбитали. p-орбитали направлены в разные стороны. Но сейчас не об этом. У нас есть еще один атом неона, я нарисовал распределение вероятности. Получилось так себе. Но, думаю, вы поняли мысль. Посмотрите ролик об электронной конфигурации, если хотите подробнее рассмотреть эту тему, но смысл здесь в том, что распределение вероятности – это область пространства, где может находиться электрон. В какой-то момент времени здесь нет ни одного электрона. А в какой-то другой момент все электроны здесь. Тоже самое происходит и в этом неоне. Если вы подумаете о всех возможных конфигурациях электронов в этих двух атомах неона, вы увидите, что маловероятно, что электроны в них распределены равномерно. Намного более вероятным окажется то, что в каком-то из атомов электроны распределены неравномерно. Например, в этом атоме неона восемь валентных электронов расположены вот так: один, два, три, четыре, пять, шесть, семь, восемь. Что это значит? Возникает небольшой временный заряд, вот с этой стороны. Эта сторона более отрицательная, чем эта, или эта сторона более положительная чем та. Точно также, если в это же время у меня есть еще один атом неона, у него есть... у него есть один, два, три, четыре, пять, шесть, семь, восемь электронов. Нарисую немного по-другому. Предположим, этот атом неона вот такой: один, два, три, четыре, пять, шесть, семь, восемь. Выделю эти слабые силы темным цветом. Итак, здесь небольшой отрицательный заряд. Временный, только в этот момент, здесь отрицательный заряд. А здесь положительный. Эта сторона отрицательная. Эта сторона положительная. В этот момент между этими атомами неона возникает слабое притяжение, а потом оно исчезает, потому что электроны перемещаются. Но важно понимать, что моменты, когда электроны полностью рассеяны бывают очень-очень редко. Здесь всегда случайное распределение, здесь всегда есть некоторая, я не хочу сказать полярность, потому что это слишком сильное слово. Но всегда есть небольшой избыточный заряд на одной или другой стороне атома, и поэтому этот атом притягивается к сторонам других молекул с противоположным зарядом. Это очень, очень, очень слабая сила. Ее называют Лондоновская дисперсионная сила. Кстати, этот человек, Фриц Лондон, не британец. Он американский немец. Лондонская дисперсионная сила – это самая слабая из сил Ван-дер-Ваальса. Запишу этот термин. «Силы Ван-дер-Ваальса». Я его произношу. Силы Ван-дер-Ваальса – это класс межмолекулярных, или в нашем случае молекула неона - это атом. Это одноатомная молекула, так сказать. Силы Ван-дер-Ваальса – это класс сил межмолекулярного взаимодействия, это не ковалентные связи и не ионные связи, такие как мы видели в солях. Сейчас мы рассмотрим это подробнее. А сила Лондона – самая слабая из них. Так неон и другие благородные газы, между их молекулами действуют только дисперсионные силы, которые являются самыми слабыми межмолекулярными силами. И поэтому неон легко переходит в газообразное состояние. Благородные газы переходят в газообразное состояние при очень низкой температуре. Именно поэтому их называют благородными газами. Эти вещества ведут себя почти как идеальный газ, потому что их молекулы почти не взаимодействуют. Ладно. А теперь давайте посмотрим, что происходит, если молекулы притягиваются друг к другу сильнее, то есть они немного более полярные. Например, возьмем хлороводород. Водород может как притягивать, так и отдавать электроны. Хлор притягивает к себе электроны. У хлора довольно высокая электроотрицательность. Но меньше, чем у этих элементов. Самые сильные акцепторы электронов это азот, кислород и фтор, но у хлора тоже довольно высокая электроотрицательность. Итак, у меня есть хлороводород. Это атом хлора, у него семь электронов и один электрон он берет у водорода. Он делит электрон с водородом, я обозначу это вот так. Хлор более электроотрицательный, чем водород, поэтому электроны все время находятся ближе к нему. Там, где находятся электроны, возникает частичный отрицательный заряд, а здесь возникает частичный положительный заряд. Очень похоже на водородные связи. На самом деле это такой же тип связи, как и водородные, это диполь-дипольные связи или диполь-дипольное взаимодействие. Так, если у меня есть один такой атом хлора и второй атом хлора, вот такой. Давайте, лучше я просто скопирую и вставлю этот рисунок, вот здесь. В итоге эти атомы взаимодействуют. Атомы хлора притягиваются… Точнее притягиваются молекулы хлороводорода. Положительная сторона, положительный полюс этого диполя находится на водороде, потому что электроны находятся ближе к хлору, и положительный полюс притягивается к атому хлора другой молекулы. И поэтому эти силы Ван-дер-ваальса, это диполь-дипольное взаимодействие сильнее, чем дисперсионная сила Лондона. Дисперсионные силы присутствуют при любых межмолекулярных взаимодействиях. Просто они очень слабые по сравнению с другими типами межмолекулярных взаимодействий. Дисперсионные силы нужно учитывать только в случае веществ вроде благородных газов. Даже здесь действуют лондоновские дисперсионные силы, когда изменяется распределение электронов в какой-то момент времени. Но диполь-дипольное взаимодействие намного сильнее. А из-за того, что оно сильнее, хлороводороду нужно больше энергии, чтобы перейти в жидкое и газообразное состояние, чем гелию. А если электроотрицательность еще больше, самыми электроотрицательными являются азот, кислород и фтор, то мы будем иметь дело с особым видом диполь-дипольных взаимодействий, это водородная связь. Давайте возьмем фтороводород, HF, несколько молекул. Например, фтороводород здесь и здесь, еще нарисую здесь. У фтора очень высокая электроотрицательность. Это один из трех самых электроотрицательных атомов в периодической таблице. Он очень эффективно оттягивает электроны. Это случай очень сильного диполь-дипольного взаимодействия, здесь все электроны перемещаются ко фтору. Итак, здесь возникает частичный положительный заряд, и частичный отрицательный заряд, частичный положительный, частичный отрицательный, положительный, отрицательный и так далее. Итак, вот что у нас получилось. Это настоящее дипольное взаимодействие. Но это очень сильное дипольное взаимодействие, его называют водородная связь, потому что здесь взаимодействуют водород и атом с очень высокой электроотрицательностью, и электроотрицательный атом оттягивает к себе электрон водорода. Водород здесь в виде протона, у него положительный заряд, и он сильно притягивается к отрицательно заряженным концам диполей. Все это – силы Ван-дер-Ваальса. И самая слабая из них – дисперсионная сила. А если у нас есть молекула с электроотрицательным атомом, у нас образуется диполь, молекула становится полярной, и положительные и отрицательные полюса будут притягиваться. Это диполь-дипольное взаимодействие. Но самое сильное взаимодействие - это водородная связь, потому что атом с очень высокой электроотрицательностью полностью забирает к себе электрон водорода. Точнее, почти полностью забирает к себе электрон водорода. Эти атомы все еще делят электрон, но он почти всегда на этой стороне молекулы. Так молекулы сильнее связаны друг с другом и температура кипения будет больше. Итак, у нас есть дисперсионные силы Лондона, дипольные и полярные связи, и водородные связи. Все это - силы Ван-дер-Ваальса. Сила межмолекулярного взаимодействия растет и повышается температура кипения, потому что нужно затратить все больше и больше энергии, чтобы отделить эти молекулы друг от друга. У нас заканчивается время... Получился неплохой обзор разных типов межмолекулярных взаимодействий, не ковалентной и не ионной природы. В следующем ролике я расскажу о некоторых типах ковалентных и ионных структур, и об их влиянии на температуру кипения. Subtitles by the Amara.org community

Классификация вандерваальсовых сил

Вандерваальсово взаимодействие состоит из трёх типов слабых электромагнитных взаимодействий:

  • Ориентационные силы , диполь-дипольное притяжение. Осуществляется между молекулами, являющимися постоянными диполями. Примером может служить HCl в жидком и твёрдом состоянии. Энергия такого взаимодействия обратно пропорциональна кубу расстояния между диполями.
  • Дисперсионное притяжение (лондоновские силы, дисперсионные силы). Обусловлены взаимодействием между мгновенным и наведённым диполем. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.
  • Индукционное притяжение (поляризационное притяжение). Взаимодействие между постоянным диполем и наведённым (индуцированным). Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.

До сих пор многие авторы исходят из предположения, что вандерваальсовы силы определяют межслоевое взаимодействие в слоистых кристаллах, что противоречит экспериментальным данным: масштабу анизотропии температуры Дебая и, соответственно, масштабу анизотропии решёточного отражения. Исходя из данного ошибочного предположения построены многие двумерные модели, «описывающие» свойства, в частности

Изотермы, построенные при одной и той же температуре для разных газов, выглядят, конечно, по-разному, потому что константыаи и связанные с ними критические величины и Тк различны для разных газов. Напомним, что изотермы идеальных газов не зависят от индивидуальных свойств газов (если изотермы строятся для одного моля).

Можно, однако, и для неидеальных газов написать уравнение изотермы так, чтобы оно не зависело от природы газа, т. е. было универсальным. Для этого нужно, чтобы параметры состояния газа находились в одинаковых отношениях к соответствующим критическим параметрам. Другими словами, любые газы с одинаковыми (или, как говорят, соответственными) отношениями

будут описываться идентичными уравнениями. Безразмерные параметры и называются приведенными параметрами.

Подставим в уравнение Ван-дер-Ваальса

вместо соответственно выразив и по уравнениям (67.2). Тогда получим:

В этом уравнении не содержатся константы, характеризующие отдельное вещество. Поэтому оно является универсальным уравнением, справедливым для всех веществ.

Уравнение (70.1) называется приведенным уравнением состояния. Из него следует, что если вещества обладают двумя одинаковыми приведенными параметрами из трех, то и третий параметр тоже одинаков для этих веществ. Этот закон носит название закона соответственных состояний. Он выражает тот факт, что, изменяя масштаб, которым измеряются две из трех величин (например,

И V), характеризующих состояние вещества, т. е. используя приведенные параметры, можно совместить изотермы всех веществ.

Закон соответственных состояний тоже является приближенным, хотя его точность несколько выше точности самого уравнения Ван-дер-Ваальса, ибо он не зависит от конкретного вида уравнения состояния.

С помощью закона соответственных состояний можно вычислить неизвестные изотермы различных газов, если известны их критические параметры и измерены изотермы других газов.

Уравнение состояния идеального газа достаточно хорошо изображает поведение реальных газов при высоких температурах и низких давлениях. Однако когда температура и давление таковы, что газ близок к конденсации, то наблюдаются значительные отклонения от законов идеального газа.

Среди ряда уравнений состояния, предложенных для изображения поведения реальных газов, особенно интересно уравнение Ван-дер-Ваальса вследствие его простоты и вследствие того, что оно удовлетворительно описывает поведение многих веществ в широком интервале температур и давлений.

Ван-дер-Ваальс вывел свое уравнение из соображений, основанных на кинетической теории, учитывая, в качестве первого приближения величину молекул и силы взаимодействия между ними. Его уравнение состояния (написанное для одного моля вещества) таково:

где константы, зависящие от особенностей данного вещества. При уравнение (99) превращается в уравнение идеального газа. Член описывает эффект, связанный с конечной величиной молекул, а член изображает эффект молекулярных сил взаимодействия.

На рис. 14 показаны некоторые изотермы, вычисленные согласно уравнению Ван-дер-Ваальса. Сравнивая эти изотермы с изотермами рис. 13, мы видим, что их очертания имеют много сходства. В обоих случаях на одной изотерме есть точка перегиба Изотерма, содержащая точку перегиба - критическая изотерма, а сама точка перегиба - критическая точка. Изотермы при температуре выше критической в обоих случаях ведут себя похоже. Однако изотермы ниже критической температуры существенно различаются. Изотермы Ван-дер-Ваальса являются непрерывными кривыми с минимумом и максимумом, тогда как изотермы на рис. 13

имеют две «угловые» точки и являются горизонтальными в той области, где изотермы Ван-дер-Ваальса содержат максимум и минимум.

Причина качественно различного поведения двух семейств изотерм в районе, обозначенном на рис. 13, заключается в том, что точки горизонтального отрезка изотерм на рис. 13 не соответствуют гомогенному состоянию, так как на этих участках вещество разделилось на жидкую и парообразную части.

Если мы изотермически сжимаем ненасыщенный пар до тех пор, пока не достигнем давления насыщения, а затем по-прежнему продолжаем уменьшать объем, то конденсация части пара не сопровождается дальнейшим увеличением давления, что соответствует горизонтальным изотермам рис. 13. Однако если очень осторожно сжимать пар и сохранять его свободным от частичек пыли, то можно достигнуть давления значительно более высокого, чем давление насыщения в момент наступления конденсации. Когда осуществляется подобная ситуация, пар оказывается перегретым. Но перегретое состояние неустойчиво (лабильно). В результате какого-либо даже легкого нарушения состояния может произойти конденсация, причем система перейдет в устойчивое (стабильное) состояние, характеризуемое наличием жидкой и парообразной частей.

Неустойчивые состояния важны для нашего обсуждения, так как они иллюстрируют возможность существования гомогенных состояний в той области значений параметров, которые характерны для насыщенного пара над жидкостью. Предположим, что эти неустойчивые состояния изображены участком изотермы Ван-дер-Ваальса на рис. 15. Горизонтальный участок непрерывной изотермы показывает устойчивые состояния жидкость - пар. Если бы можно было осуществить все нёустойчивые состояния на изотерме Ван-дер-Ваальса, то они походили бы при непрерывном изотермическом процессе от пара, показанного участком изотермы, до жидкости, изображенной участком Если известна изотерма Ван-дер-Ваальса, то можно определить, каково давление насыщенного пара при заданной температуре, или, на геометрическом языке, как высоко над осью следует начертить горизонтальный отрезок который соответствует состоянию жидкость - пар. Докажем, что это расстояние должно быть таким, чтобы площади и были равны. Для доказательства покажем сначала, что работа, совершаемая

системой во время обратимого изотермического цикла, всегда равна нулю. Из уравнения (16) следует, что работа, совершаемая во время цикла, равна теплоте, поглощаемой системой. Но для обратимого цикла остается в силе равенство (66), а так как наш цикл изотермич ескии, то можно вынести из-под знака интеграла в (66). Уравнение (66) показывает, что вся поглощаемая теплота и, следовательно, вся выполняемая во время цикла работа равпы нулю.

Теперь рассмотрим обратимый изотермический цикл (рис. 15).

Работа, совершаемая во время цикла, должна обратиться в нуль.

Участок проходится по ходу часовой стрелки, поэтому соответствующая площадь положительна, а участок против часовой стрелки, и соответствующая площадь отрицательна. Поскольку вся площадь цикла равна нулю, то абсолютные величины площадей двух циклов и должны быть равны, что и требовалось доказать.

Могло бы возникнуть следующее возражение против приведенного выше доказательства: так как площадь изотермического цикла очевидно, не равна нулю, то не верно, что работа, совершаемая во время обратимого изотермического цикла, всегда равна нулю. Ответ на это возражение таков: цикл не является обратимым.

Чтобы убедиться в этом, заметим, что точка на диаграмме изображает два различных состояния, в зависимости от того, рассматривается ли она как точка изотермы Ван-дер-Ваальса или как точка на изотерме жидкость - пар. Объем и давление, изображенные точкой одинаковы в обоих случаях, но на изотерме Ван-дер-Ваальса D изображает неустойчивое гомогенное (однородное) состояние, а на изотерме жидкость - пар устойчивое негомогенное (неоднородное) состояние, образованное из жидкой и газообразной частей. Когда мы совершаем цикл то проходим от состояния на изотерме Ван-дер-Ваальса к состоянию на изотерме жидкость-пар. Так как состояние на изотерме жидкость - пар более устойчиво, чем на изотерме Ван-дер-Ваальса, то этот путь необратим - его нельзя было бы самопроизвольно осуществить в обратном направлении. Таким образом, весь цикл является необратимым, и поэтому площадь цикла не должна равняться нулю.

Критические значения вещества могут быть выражены через константы которые входят в уравнение Ван-дер-Ваальса.

Уравнение Ван-дер-Ваальса (99), когда и заданы, является уравнением третьей степени относительно Поэтому, вообще говоря, существует три различных корня V (при фиксированных значениях Однако критическая изотерма имеет горизонтальную точку перегиба при т. е. при кривая третьего порядка - критическая изотерма - касается горизонтальной линии Отсюда следует, что кубическое уравнение для V, которое получится, если положить в имеет тройной корень Это уравнение можно записать в виде

Так как тройной корень приведенного уравнения, то левая часть должна иметь форму Сравнивая, находим

Решив эти три уравнения для получим

Эти уравнения выражают критические значения через

Целесообразно отметить, что если использовать как единицы объема, давления и температуры, то уравнение Ван-дер-Ваальса имеет одинаковую форму для всех веществ.

и используя равенства (100), из (99) получим:

Так как это уравнение содеридат только численные константы, то оно одинаково для всех веществ. Состояния различных веществ, которые определяются теми же величинами называются соответственными состояниями, и (101) часто называется «уравнением Ван-дер-Ваальса для соответственных состояний».

В разделе 14 было показано, что если вещество подчиняется уравнению состояния идеального газа то можно вывести термодинамически, что его энергия определяется лишь температурой и не зависит от объема. Этот результат верен только для

Уравнение Менделеева - Клапейрона является уравнением состояния идеального газа и довольно точно описывает поведение реальных газов при небольшой плотности, т.е. достаточно низком давлении и высокой температуре ( ).

При понижении температуры и увеличении давления, плотность газа увеличивается, а расстояние между его молекулами уменьшается, поэтому пренебрегать их объёмом и взаимо-

Рис. 23 действием мы не можем.

Силы взаимного притяжения между молекулами направлены внутрь газа, т. е. в сторону наибольшего окружения периферийных молекул (рис.23).

Действие этих сил подобно наличию некоторого добавочного давления на газ, называемого внутренним.

В связи с тем, что молекулы газа занимают конечные размеры, они занимают суммарный объём V / . Поэтому объём, предоставленный для передвижений молекулам, будет меньше на величину V" . Таким образом, для описания состояния реальных газов необходимо сделать две поправки:

а ) на дополнительное давление, обусловленное взаимодействием молекул;

б ) на уменьшение объёма, в связи с учётом размеров самих молекул.

Возьмём за основу уравнение состояния идеального газа и, внеся в него соответствующие поправки, получим уравнение состояния реального газа. Для одного моля газа имеем

Внесённые поправки были впервые рассчитаны и предложены Ван-дер-Ваальсом (гол.)

где а и в – постоянные Ван-дер-Ваальса.

Уравнение Ван-дер-Ваальса для одного моля реального газа имеет вид:

. (26)

Учитывая, что и, умножив обе части уравнения на , получим уравнение Ван-дер-Ваальса для любой массы газа: . (27)

Полученные нами уравнения имеют третью степень относительно V , например, для одного моля после преобразования, оно будет иметь вид:

0.

Это означает, что оно может иметь либо три действительных, либо один действительный и два мнимых корня, при чём физический смысл имеют только действительные корни.

Эти особенности уравнения состояния нашли своё отражение в графиках зависимости p (V m ), называемых кривыми Ван-дер-Ваальса (рис. 24).

Заметим, что при некоторой температуре лишь одна точка перегиба. Она называется критической .

Как уже указывалось в § 60, для реальных газов необходимо учитывать размеры молекул и их взаимодействие друг с другом, поэтому модель идеального газа и уравнение Клапейрона-Менделеева (42.4) pV m =RT (для моля газа), описывающее идеальный газ, для реальных газов непригодны.

Учитывая собственный объем молекул и сил межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальса (1837-1923) вывел уравнения состояния реального газа. Ван-дер-Ваальсом в уравнение Клапейрона-Менделеева введены две поправки.

1. Учет собственного объема молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не V m , a V m - b , где b - объем, занимаемый самими молекулами. Объем b равен учетверенному собственному объему молекул. Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы. Это означает, что для центров обеих молекул оказывается недоступным сферический объем радиуса d , т. е. объем, равный восьми объемам молекулы, а в расчете на одну молекулу - учетверенный объем молекулы.

2. Учет притяжения молекул. Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е.

p" = a/V 2 m , (61.1)

где а- постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, V m - молярный объем.

Вводя эти поправки, получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния реальных газов):

(p + a / V 2 m )(V m - b )= RT . (61.2)

Для произвольного количества вещества v газа (v =т/М) с учетом того, что V = vV m , уравнение Ван-дер-Ваальса примет вид

где поправки а и b - постоянные для каждого газа величины, определяемые опытным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состояний газа и решаются относительно а и b ).

При выводе уравнения Ван-дер-Ваальса сделан целый ряд упрощений, поэтому оно также весьма приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.

Уравнение Ван-дер-Ваальса не единственное уравнение, описывающее реальные газы. Существуют и другие уравнения, некоторые из них даже точнее описывают реальные газы, но не рассматриваются из-за их сложности.

§ 62. Изотермы Ван-дер-Ваальса и их анализ

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ваальса - кривые зависимости р от V m при заданных Т, определяемые уравнением Ван-дер-Ваальса (61.2) для моля газа. Эти кривые (рассматриваются для четырех различных температур; рис. 89) имеют довольно своеобразный характер. При высоких температурах (T>T к) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При некоторой температуре Т к на изотерме имеется лишь одна точка перегиба К. Эта изотерма называется критической, соответствующая ей температура T к - критической температурой. Критическая изотерма имеет лишь одну точку перегиба К, называемую критической точкой; в этой точке касательная к ней параллельна оси абсцисс. Соответствующие этой точке объем V к и давление р к называются также критическими. Состояние с критическими параметрами (р к, V к , Т к ) называется критическим состоянием. При низких температурах (Т<Т к ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

Для пояснения характера изотерм преобразуем уравнение Ван-дер-Ваальса (61.2) к виду

pV 3 m -(RT+pb) V 2 m +aV m -ab=0.

Уравнение (62.1) при заданных р и Т является уравнением третьей степени относительно V m ; следовательно, оно может иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь вещественные положительные корни. Поэтому первому случаю соответствуют изотермы при низких температурах (три значения объема газа V 1 , V 2 и V 3 отвечают (символ «т» для простоты опускаем) одному значению давления р 1 ), второму случаю- изотермы при высоких температурах.

Рассматривая различные участки изотермы при Т<Т к (рис.90), видим, что на участках 1 -3 и 5-7 при уменьшении объема V m давление р возрастает, что естественно. На участке 3-5 сжатие вещества приводит к уменьшению давления; практика же показывает, что такие состояния в природе не осуществляются. Наличие участка 3-5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное изменение состояния и распад вещества на две фазы. Таким образом, истинная изотерма будет иметь вид ломаной линии 7-6-2-1. Часть 7-6 отвечает газообразному состоянию, а часть 2-1 - жидкому. В состояниях, соответствующих горизонталь-

ному участку изотермы 6-2, наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном состоянии при температуре ниже критической называется паром, а пар, находящийся в равновесии со своей жидкостью, называется насыщенным.

Данные выводы, следующие из анализа уравнения Ван-дер-Ваальса, были подтверждены опытами ирландского ученого Т. Эндрюса (1813-1885), изучавшего изотермическое сжатие углекислого газа. Отличие экспериментальных (Эндрюс) и теоретических (Ван-дер-Ваальс) изотерм заключается в том, что превращению газа в жидкость в первом случае соответствуют горизонтальные участки, а во втором - волнообразные.

Для нахождения критических параметров подставим их значения в уравнение (62.1) и запишем

p к V 3 -(RT к +p к b)V 2 +aV-ab= 0

(символ «т» для простоты опускаем). Поскольку в критической точке все три корня совпадают и равны V к , уравнение приводится к виду

p к (V - V к ) 3 = 0,

p к V 3 -3 p к V к V 2 +3 p к V 2 к V - p к V к = 0.

Так как уравнения (62.2) и (62.3) тождественны, то в них должны быть равны и коэффициенты при неизвестных соответствующих степеней. Поэтому можно записать

ркV 3 к =ab, 3р к V 2 к =а, 3 p к V к = RT к + p к b . Решая полученные уравнения, найдем: V к = 3b, р к = а/(27b 2), T к =8 a /(27 Rb }.

Если через крайние точки горизонтальных участков семейства изотерм провести линию, то получится колоколообразная кривая (рис. 91), ограничивающая область двухфазных состояний вещества. Эта кривая и критическая изотерма делят

диаграмму р, V m под изотермой на три области: под колоколообразной кривой располагается область двухфазных состояний (жидкость и насыщенный пар), слева от нее находится область жидкого состояния, а справа - область пара. Пар отличается от остальных газообразных состояний тем, что при изотермическом сжатии претерпевает процесс сжижения. Газ же при температуре выше критической не может быть превращен в жидкость ни при каком давлении.

Сравнивая изотерму Ван-дер-Ваальса с изотермой Эндрюса (верхняя кривая на рис. 92), видим, что последняя имеет прямолинейный участок 2-6, соответствующий двухфазным состояниям вещества. Правда, при некоторых условиях могут быть реализованы состояния, изображаемые участками ван-дер-ваальсовой изотермы 5-6 и 2-3. Эти неустойчивые состояния называются метастабильными. Участок 2-3 изображает перегретую жидкость, 5-6 - пересыщенный пар. Обе фазы ограниченно устойчивы

При достаточно низких температурах изотерма пересекает ось V m , переходя в область отрицательных давлений (нижняя кривая на рис. 92). Вещество под отрицательным давлением находится в состоянии растяжения. При некоторых условиях такие состояния также реализуются. Участок 8 -9 на нижней изотерме соответствует перегретой жидкости, участок 9 - 10 - растянутой жидкости.