График функции sinx и ее свойства. Функции y = sin x, y = cos x, y = mf(x), y = f(kx), y = tg x, y = ctg x. Выражение синуса через косинус

Геометрическое определение синуса и косинуса

\(\sin \alpha = \dfrac{|BC|}{|AB|} \) , \(\cos \alpha = \dfrac{|AC|}{|AB|} \)

α - угол, выраженный в радианах.

Синус (sin α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AB|.

Косинус (cos α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AC| к длине гипотенузы |AB|.

Тригонометрическое определение

С помощью формул, указанных выше, можно найти синус и косинус острого угла. Но нужно научиться вычислять синус и косинус угла произвольной величины. Прямоугольный треугольник не даёт такой возможности (тупого угла, например, в нём быть не может); следовательно, нужно более общее определение синуса и косинуса, содержащее указанные формулы как частный случай.

На помощь приходит тригонометрическая окружность. Пусть дан некоторый угол; ему отвечает одноимённая точка на тригонометрической окружности.

Рис. 2. Тригонометрическое определение синуса и косинуса

Косинус угла - это абсцисса точки. Синус угла - это ордината точки.

На рис. 2 угол взят острым, и легко понять, что данное определение совпадает с общим геометрическим определением. В самом деле, мы видим прямоугольный треугольник с единичной гипотенузой O и острым углом. Прилежащий катет этого треугольника есть cos (сравните с рис. 1) и одновременно абсцисса точки; противолежащий катет есть sin (как на рис. 1) и одновременно ордината точки.

Но теперь мы уже не стеснены первой четвертью и получаем возможность распространить данное определение на любой угол. На рис. 3 показано, что такое синус и косинус угла во второй, третьей и четвёртой четвертях.

Рис. 3. Синус и косинус во II, III и IV четвертях

Табличные значения синуса и косинуса

Нулевой угол \(\LARGE 0^{\circ } \)

Абсцисса точки 0 равна 1 , ордината точки 0 равна 0 . Следовательно,

cos 0 = 1 sin 0 = 0

Рис 4. Нулевой угол

Угол \(\LARGE \frac{\pi}{6} = 30^{\circ } \)

Мы видим прямоугольный треугольник с единичной гипотенузой и острым углом 30° . Как известно, катет, лежащий напротив угла 30° , равен половине гипотенузы 1 ; иными словами, вертикальный катет равен 1/2 и, стало быть,

\[ \sin \frac{\pi}{6} =\frac{1}{2} \]

Горизонтальный катет находим по теореме Пифагора (или, что то же самое, находим косинус по основному тригонометрическому тождеству):

\[ \cos \frac{\pi}{6} = \sqrt{1 - \left(\frac{1}{2} \right)^{2} } =\frac{\sqrt{3} }{2} \]

1 Почему так получается? Разрежьте равносторонний треугольник со стороной 2 вдоль его высоты! Он распадётся на два прямоугольных треугольника с гипотенузой 2, острым углом 30° и меньшим катетом 1.

Рис 5. Угол π / 6

Угол \(\LARGE \frac{\pi}{4} = 45^{\circ } \)

В данном случае прямоугольный треугольник является равнобедренным; синус и косинус угла 45° равны друг другу. Обозначим их пока через x . Имеем:

\[ x^{2} + x^{2} = 1 \]

откуда \(x=\frac{\sqrt{2} }{2} \). Следовательно,

\[ \cos \frac{\pi}{4} = \sin \frac{\pi}{4} =\frac{\sqrt{2} }{2} \]

Рис 5. Угол π / 4

Свойства синуса и косинуса

Принятые обозначения

\(\sin^2 x \equiv (\sin x)^2; \) \(\quad \sin^3 x \equiv (\sin x)^3; \) \(\quad \sin^n x \equiv (\sin x)^n \) \(\sin^{-1} x \equiv \arcsin x \) \((\sin x)^{-1} \equiv \dfrac1{\sin x} \equiv \cosec x \) .

\(\cos^2 x \equiv (\cos x)^2; \) \(\quad \cos^3 x \equiv (\cos x)^3; \) \(\quad \cos^n x \equiv (\cos x)^n \) \(\cos^{-1} x \equiv \arccos x \) \((\cos x)^{-1} \equiv \dfrac1{\cos x} \equiv \sec x \) .

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2π.

\(\sin(x + 2\pi) = \sin x; \quad \) \(\cos(x + 2\pi) = \cos x \)

Четность

Функция синус – нечетная. Функция косинус – четная.

\(\sin(-x) = - \sin x; \quad \) \(\cos(-x) = \cos x \)

Области определения и значений, экстремумы, возрастание, убывание

Основные свойства синуса и косинуса представлены в таблице (n - целое).

\(\small < x < \) \(\small -\pi + 2\pi n \) \(\small < x < \) \(\small 2\pi n \)
Убывание \(\small \dfrac{\pi}2 + 2\pi n \) \(\small < x < \) \(\small \dfrac{3\pi}2 + 2\pi n \) \(\small 2\pi n \) \(\small < x < \) \(\pi + \small 2\pi n \)
Максимумы, \(\small x = \) \(\small \dfrac{\pi}2 + 2\pi n \) \(\small x = 2\pi n \)
Минимумы, \(\small x = \) \(\small -\dfrac{\pi}2 + 2\pi n \) \(\small x = \) \(\small \pi + 2\pi n \)
Нули, \(\small x = \pi n \) \(\small x = \dfrac{\pi}2 + \pi n \)
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы, содержащие синус и косинус

Сумма квадратов

\(\sin^2 x + \cos^2 x = 1 \)

Формулы синуса и косинуса суммы и разности

\(\sin(x + y) = \sin x \cos y + \cos x \sin y \)
\(\sin(x - y) = \sin x \cos y - \cos x \sin y \)
\(\cos(x + y) = \cos x \cos y - \sin x \sin y \)
\(\cos(x - y) = \cos x \cos y + \sin x \sin y \)

\(\sin(2x) = 2 \sin x \cos x \)
\(\cos(2x) = \cos^2 x - \sin^2 x = \) \(2 \cos^2 x - 1 = 1 - 2 \sin^2 x \)
\(\cos\left(\dfrac{\pi}2 - x \right) = \sin x \) ; \(\sin\left(\dfrac{\pi}2 - x \right) = \cos x \)
\(\cos(x + \pi) = - \cos x \) ; \(\sin(x + \pi) = - \sin x \)

Формулы произведения синусов и косинусов

\(\sin x \cos y = \) \(\dfrac12 {\Large [} \sin(x - y) + \sin(x + y) {\Large ]} \)
\(\sin x \sin y = \) \(\dfrac12 {\Large [} \cos(x - y) - \cos(x + y) {\Large ]} \)
\(\cos x \cos y = \) \(\dfrac12 {\Large [} \cos(x - y) + \cos(x + y) {\Large ]} \)

\(\sin x \cos y = \dfrac12 \sin 2x \)
\(\sin^2 x = \dfrac12 {\Large [} 1 - \cos 2x {\Large ]} \)
\(\cos^2 x = \dfrac12 {\Large [} 1 + \cos 2x {\Large ]} \)

Формулы суммы и разности

\(\sin x + \sin y = 2 \, \sin \dfrac{x+y}2 \, \cos \dfrac{x-y}2 \)
\(\sin x - \sin y = 2 \, \sin \dfrac{x-y}2 \, \cos \dfrac{x+y}2 \)
\(\cos x + \cos y = 2 \, \cos \dfrac{x+y}2 \, \cos \dfrac{x-y}2 \)
\(\cos x - \cos y = 2 \, \sin \dfrac{x+y}2 \, \sin \dfrac{y-x}2 \)

Выражение синуса через косинус

\(\sin x = \cos\left(\dfrac{\pi}2 - x \right) = \) \(\cos\left(x - \dfrac{\pi}2 \right) = - \cos\left(x + \dfrac{\pi}2 \right) \) \(\sin^2 x = 1 - \cos^2 x \) \(\sin x = \sqrt{1 - \cos^2 x} \) \(\{ 2 \pi n \leqslant x \leqslant \pi + 2 \pi n \} \) \(\sin x = - \sqrt{1 - \cos^2 x} \) \(\{ -\pi + 2 \pi n \leqslant x \leqslant 2 \pi n \} \) .

Выражение косинуса через синус

\(\cos x = \sin\left(\dfrac{\pi}2 - x \right) = \) \(- \sin\left(x - \dfrac{\pi}2 \right) = \sin\left(x + \dfrac{\pi}2 \right) \) \(\cos^2 x = 1 - \sin^2 x \) \(\cos x = \sqrt{1 - \sin^2 x} \) \(\{ -\pi/2 + 2 \pi n \leqslant x \leqslant \pi/2 + 2 \pi n \} \) \(\cos x = - \sqrt{1 - \sin^2 x} \) \(\{ \pi/2 + 2 \pi n \leqslant x \leqslant 3\pi/2 + 2 \pi n \} \) .

Выражение через тангенс

\(\sin^2 x = \dfrac{\tg^2 x}{1+\tg^2 x} \) \(\cos^2 x = \dfrac1{1+\tg^2 x} \) .

При \(- \dfrac{\pi}2 + 2 \pi n < x < \dfrac{\pi}2 + 2 \pi n \) \(\sin x = \dfrac{\tg x}{ \sqrt{1+\tg^2 x} } \) \(\cos x = \dfrac1{ \sqrt{1+\tg^2 x} } \) .

При \(\dfrac{\pi}2 + 2 \pi n < x < \dfrac{3\pi}2 + 2 \pi n \) :
\(\sin x = - \dfrac{\tg x}{ \sqrt{1+\tg^2 x} } \) \(\cos x = - \dfrac1{ \sqrt{1+\tg^2 x} } \) .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.
[ img style="max-width:500px;max-height:1080px;" src="tablitsa.png" alt="Таблица синусов и косинусов" title="Таблица синусов и косинусов" ]

Выражения через комплексные переменные

\(i^2 = -1 \)
\(\sin z = \dfrac{e^{iz} - e^{-iz}}{2i} \) \(\cos z = \dfrac{e^{iz} + e^{-iz}}{2} \)

Формула Эйлера

\(e^{iz} = \cos z + i \sin z \)

Выражения через гиперболические функции

\(\sin iz = i \sh z \) \(\cos iz = \ch z \)
\(\sh iz = i \sin z \) \(\ch iz = \cos z \)

Производные

\((\sin x)" = \cos x \) \((\cos x)" = - \sin x \) . Вывод формул > > >

Производные n-го порядка:
\(\left(\sin x \right)^{(n)} = \sin\left(x + n\dfrac{\pi}2 \right) \) \(\left(\cos x \right)^{(n)} = \cos\left(x + n\dfrac{\pi}2 \right) \) .

Интегралы

\(\int \sin x \, dx = - \cos x + C \) \(\int \cos x \, dx = \sin x + C \)
См. также раздел Таблица неопределенных интегралов >>>

Разложения в ряды

\(\sin x = \sum_{n=0}^{\infty} \dfrac{ (-1)^n x^{2n+1} }{ (2n+1)! } = \) \(x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + ... \) \(\{- \infty < x < \infty \} \)
\(\cos x = \sum_{n=0}^{\infty} \dfrac{ (-1)^n x^{2n} }{ (2n)! } = \) \(1 - \dfrac{x^2}{2!} + \dfrac{x^4}{4!} - \dfrac{x^6}{6!} + ... \) \(\{ - \infty < x < \infty \} \)

Секанс, косеканс

\(\sec x = \dfrac1{ \cos x } ; \) \(\cosec x = \dfrac1{ \sin x } \)

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус, соответственно.

Арксинус, arcsin

\(y = \arcsin x \) \(\left\{ -1 \leqslant x \leqslant 1; \; - \dfrac{\pi}2 \leqslant y \leqslant \dfrac{\pi}2 \right\} \)
\(\sin(\arcsin x) = x \)
\(\arcsin(\sin x) = x \) \(\left\{ - \dfrac{\pi}2 \leqslant x \leqslant \dfrac{\pi}2 \right\} \)

Арккосинус, arccos

\(y = \arccos x \) \(\left\{ -1 \leqslant x \leqslant 1; \; 0 \leqslant y \leqslant \pi \right\} \)
\(\cos(\arccos x) = x \) \(\{ -1 \leqslant x \leqslant 1 \} \)
\(\arccos(\cos x) = x \) \(\{ 0 \leqslant x \leqslant \pi \} \)

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

>>Математика: Функции у = sin х, у = cos x, их свойства и графики

Функции у = sin х, у = cos x, их свойства и графики

В этом параграфе мы обсудим некоторые свойства функций у = sin х,у = соs х и построим их графики.

1. Функция у = sin X.

Выше, в § 20, мы сформулировали правило, позволяющее каждому числу t поставить в соответствие число cos t, т.е. охарактеризовали функцию y = sin t. Отметим некоторые ее свойства.

Свойства функции u = sin t.

Область определения - множество К действительных чисел.
Это следует из того, что любому числу 2 соответствует на числовой окружности точка М(1), которая имеет вполне определенную ординату; эта ордината и есть cos t.

u = sin t - нечетная функция.

Это следует из того, что, как было доказано в § 19, для любого t выполняется равенство
Значит, график функции и = sin t, как график любой нечетной функции, симметричен относительно начала координат в прямоугольной системе координат tOи.

Функция u = sin t возрастает на отрезке
Это следует из того, что при движении точки по первой четверти числовой окружности ордината постепенно увеличивается (от 0 до 1 - см. рис. 115), а при движении точки по второй четверти числовой окружности ордината постепенно уменьшается (от 1 до 0 - см. рис. 116).


Функция u = sin t ограничена и снизу, и сверху. Это следует из того, что, как мы видели в § 19, для любого t справедливо неравенство

(этого значения функция достигает в любои точке вида (этого значения функция достигает в любой точке вида
Воспользовавшись полученными свойствами, построим график интересующей нас функции. Но (внимание!) вместо u - sin t будем писать у = sin x (ведь нам привычнее запись у = f(х), а не u = f(t)). Значит, и строить график будем в привычной системе координат хОу (а не tOy).

Составим таблицу значений функции у - sin х:


Замечание.

Приведем одну из версий происхождения термина «синус». По-латыни sinus означает изгиб (тетива лука).

Построенный график в какой-то степени оправдывает эту терминологию.

Линию, служащую графиком функции у = sin х, называют синусоидой. Ту часть синусоиды, которая изображена на рис. 118 или 119, называют волной синусоиды, а ту часть синусоиды, которая изображена на рис. 117, называют полуволной или аркой синусоиды.

2. Функция у = соs х.

Изучение функции у = соs х можно было бы провести примерно по той же схеме, которая была использована выше для функции у = sin х. Но мы выберем путь, быстрее приводящий к цели. Сначала докажем две формулы , важные сами по себе (в этом вы убедитесь в старших классах), но пока имеющие для наших целей лишь вспомогательное значение.

Для любого значения t справедливы равенства


Доказательство . Пусть числу t соответствует точка М числовой n окружности, а числу * + - -точка Р (рис. 124; ради простоты мы взяли точку М в первой четверти). Дуги АМ и ВР равны, соответственно равны и прямоугольные треугольники ОКМ и ОЬР. Значит, О К = ОЬ, МК = РЬ. Из этих равенств и из расположения треугольников ОКМ и ОЬР в системе координат делаем два вывода:

1) ордината точки Р и по модулю и по знаку совпадает с абсциссой точки М; это значит, что

2) абсцисса точки Р по модулю равна ординате точки М, но отличается от нее знаком; это значит, что


Примерно так же проводятся соответствующие рассуждения в тех случаях, когда точка М принадлежит не первой четверти.
Воспользуемся формулой (это - формула, доказанная выше, только вместо переменной t мы используем переменную х). Что дает нам эта формула? Она позволяет утверждать, что функции

тождественны, значит, их графики совпадают.
Построим график функции Для этого перейдем к вспомогательной системе координат с началом в точке (пунктирная прямая проведена на рис. 125). Привяжем функцию у = sin х к новой системе координат - это и будет график функции (рис. 125), т.е. график функции у - соs х. Его, как и график функции у = sin х, называют синусоидой (что вполне естественно).

Свойства функции у = соs х.

у = соs х - четная функция.


Этапы построения отражены на рис. 126:

1) строим график функции у = соs х (точнее, одну полуволну);
2) растянув построенный график от оси х с коэффициентом 0,5, получим одну полуволну требуемого графика;
3) с помощью полученной полуволны строим весь график функции у = 0,5 соs х.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

, Конкурс «Презентация к уроку»

Презентация к уроку












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Железо ржавеет, не находя себе применения,
стоячая вода гниет или на холоде замерзает,
а ум человека, не находя себе применения, чахнет.
Леонардо да Винчи

Используемые технологии: проблемного обучения, критического мышления, коммуникативного общения.

Цели:

  • Развитие познавательного интереса к обучению.
  • Изучение свойств функции у = sin x.
  • Формирование практических навыков построения графика функции у = sin x на основе изученного теоретического материала.

Задачи:

1. Использовать имеющийся потенциал знаний о свойствах функции у = sin x в конкретных ситуациях.

2. Применять осознанное установление связей между аналитической и геометрической моделями функции у = sin x.

Развивать инициативу, определенную готовность и интерес к поиску решения; умение принимать решения, не останавливаться на достигнутом, отстаивать свою точку зрения.

Воспитывать у учащихся познавательную активность, чувство ответственности, уважения друг к другу, взаимопонимания, взаимоподдержки, уверенности в себе; культуру общения.

Ход урока

1 этап. Актуализация опорных знаний, мотивация изучения нового материала

"Вход в урок".

На доске написаны 3 утверждения:

  1. Тригонометрическое уравнение sin t = a всегда имеет решения.
  2. График нечетной функции можно построить с помощью преобразования симметрии относительно оси Оу.
  3. График тригонометрической функции можно построить, используя одну главную полуволну.

Учащиеся обсуждают в парах: верны ли утверждения? (1 минута). Затем результаты первоначального обсуждения (да, нет) вносятся в таблицу в столбец "До".

Учитель ставит цели и задачи урока.

2. Актуализация знаний (фронтально на модели тригонометрического круга ).

Мы уже познакомились с функцией s = sin t.

1) Какие значения может принимать переменная t. Какова область определения этой функции?

2) В каком промежутке заключены значения выражения sin t. Найти наибольшее и наименьшее значения функции s = sin t.

3) Решите уравнение sin t = 0.

4) Что происходит с ординатой точки при ее движении по первой четверти? (ордината увеличивается). Что происходит с ординатой точки при ее движении по второй четверти? (ордината постепенно уменьшается). Как это связано с монотонностью функции? (функция s = sin t возрастает на отрезке и убывает на отрезке ).

5) Запишем функцию s = sin t в привычном для нас виде у = sin x (строить будем в привычной системе координат хОу) и составим таблицу значений этой функции.

х 0
у 0 1 0

2 этап. Восприятие, осмысление, первичное закрепление, непроизвольное запоминание

4 этап. Первичная систематизация знаний и способов деятельности, их перенос и применение в новых ситуациях

6. № 10.18 (б,в)

5 этап. Итоговый контроль, коррекция, оценка и самооценка

7. Возвращаемся к утверждениям (начало урока), обсуждаем, используя свойства тригонометрической функции у = sin x, и заполняем в таблице столбец "После".

8. Д/з: п.10, №№ 10.7(а), 10.8(б), 10.11(б), 10.16(а)

Урок и презентация на тему: "Функция y=sin(x). Определения и свойства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:

  • Свойства функции Y=sin(X).
  • График функции.
  • Как строить график и его масштаб.
  • Примеры.

Свойства синуса. Y=sin(X)

Ребята, мы уже познакомились с тригонометрическими функциями числового аргумента. Вы помните их?

Давайте познакомимся поближе с функцией Y=sin(X)

Запишем некоторые свойства этой функции:
1) Область определения – множество действительных чисел.
2) Функция нечетная. Давайте вспомним определение нечетной функции. Функция называется нечетной если выполняется равенство: y(-x)=-y(x). Как мы помним из формул привидения: sin(-x)=-sin(x). Определение выполнилось, значит Y=sin(X) – нечетная функция.
3) Функция Y=sin(X) возрастает на отрезке и убывает на отрезке [π/2; π]. Когда мы движемся по первой четверти (против часовой стрелки), ордината увеличивается, а при движении по второй четверти она уменьшается.

4) Функция Y=sin(X) ограничена снизу и сверху. Данное свойство следует из того, что
-1 ≤ sin(X) ≤ 1
5) Наименьшее значение функции равно -1 (при х = - π/2+ πk). Наибольшее значение функции равно 1 (при х = π/2+ πk).

Давайте, воспользовавшись свойствами 1-5, построим график функции Y=sin(X). Будем строить наш график последовательно, применяя наши свойства. Начнем строить график на отрезке .

Особое внимание стоит обратить на масштаб. На оси ординат удобнее принять единичный отрезок равный 2 клеточкам, а на оси абсцисс - единичный отрезок (две клеточки) принять равным π/3 (смотрите рисунок).


Построение графика функции синус х, y=sin(x)

Посчитаем значения функции на нашем отрезке:



Построим график по нашим точкам, с учетом третьего свойства.

Таблица преобразований для формул привидения

Воспользуемся вторым свойством, которое говорит, что наша функция нечетная, а это значит, что ее можно отразить симметрично относительно начало координат:


Мы знаем, что sin(x+ 2π) = sin(x). Это значит, что на отрезке [- π; π] график выглядит так же, как на отрезке [π; 3π] или или [-3π; - π] и так далее. Нам остается аккуратно перерисовать график на предыдущем рисунке на всю ось абсцисс.



График функции Y=sin(X) называют - синусоидой.


Напишем еще несколько свойств согласно построенному графику:
6) Функция Y=sin(X) возрастает на любом отрезке вида: [- π/2+ 2πk; π/2+ 2πk], k – целое число и убывает на любом отрезке вида: [π/2+ 2πk; 3π/2+ 2πk], k – целое число.
7) Функция Y=sin(X) – непрерывная функция. Посмотрим на график функции и убедимся что у нашей функции нет разрывов, это и означает непрерывность.
8) Область значений: отрезок [- 1; 1]. Это также хорошо видно из графика функции.
9) Функция Y=sin(X) - периодическая функция. Посмотрим опять на график и увидим, что функция принимает одни и те же значения, через некоторые промежутки.

Примеры задач с синусом

1. Решить уравнение sin(x)= x-π

Решение: Построим 2 графика функции: y=sin(x) и y=x-π (см. рисунок).
Наши графики пересекаются в одной точке А(π;0), это и есть ответ: x = π




2. Построить график функции y=sin(π/6+x)-1

Решение: Искомый график получится путем переноса графика функции y=sin(x) на π/6 единиц влево и 1 единицу вниз.




Решение: Построим график функции и рассмотрим наш отрезок [π/2; 5π/4].
На графике функции видно, что наибольшие и наименьшие значения достигаются на концах отрезка, в точках π/2 и 5π/4 соответственно.
Ответ: sin(π/2) = 1 – наибольшее значение, sin(5π/4) = наименьшее значение.



Задачи на синус для самостоятельного решения


  • Решите уравнение: sin(x)= x+3π, sin(x)= x-5π
  • Построить график функции y=sin(π/3+x)-2
  • Построить график функции y=sin(-2π/3+x)+1
  • Найти наибольшее и наименьшее значение функции y=sin(x) на отрезке
  • Найти наибольшее и наименьшее значение функции y=sin(x) на отрезке [- π/3; 5π/6]