Примеры применяемых технологий при строительстве линейной части газопроводов. Производство систем температурной стабилизации вечномерзлых грунтов Удерживающие устройства термостабилизаторов от ветровых нагрузок

Термостабилизаторы грунтов применяются при строительстве фундаментов в условиях вечной мерзлоты, что сократить объемы капиталовложений от 20% до 50% за счет увеличения несущей способности, сократить сроки строительства до 50% и площадь строительства до 50%, а также гарантировать безопасность любого самого сложного сооружения.

Общее описание:

Термостабилизаторы грунтов представлены четырьмя основными видами сезоннодействующих охлаждающих устройств (СОУ):

горизонтальные естественнодействующие трубчатые системы (ГЕТ),

вертикальные естественнодействующие трубчатые системы (ВЕТ),

индивидуальные термостабилизаторы,

глубинные СОУ.

Видео:


Термостабилизаторы грунтов имеют преимущества:

Применение данных технологий при строительстве фундаментов позволяет:

– поддерживать необходимую проектную температуру грунтов основания,

сократить объемы капиталовложений от 20% до 50% за счет увеличения несущей способности,

– сократить сроки строительства до 50%,

сократить площадь строительства до 50%,

– гарантировать безопасность любого самого сложного сооружения,

в качестве хладагента используется аммиак или углекислота,

режим работы с октября по апрель.

Применение:

линейно-протяженные объекты: нефтепродуктопроводы, газопроводы, технологические трубопроводы, автомобильные дороги, железные дороги, опоры мостов и акведуков, опоры ЛЭП, опоры технологических трубопроводов , водоводов,

инженерные сооружения: резервуарные парки емкостей, устья газовых скважин, устья нефтяных скважин, факелы открытого типа, шламовые амбары, полигоны ТБО, парки химических реагентов, технические эстакады,

здания: нефтеперекачивающие станции, газокомпрессорные станции, опорные базы промыслов, жилые комплексы, промышленные здания, здания общественно-гражданского назначения,

гидротехнические сооружения: склоновые участки нефтегазопроводов, берегоукрепление, плотины, гидроузлы, дамбы, противофильтрационные, мерзлотные завесы.

Горизонтальные естественнодействующие трубчатые (ГЕТ) системы:

Система ГЕТ представляет собой герметично выполненное теплопередающее устройство, автоматически действующее в зимнее время за счет силы тяжести и положительной разницы температур между грунтом и наружным воздухом.

Система ГЕТ состоит из двух основных элементов: 1) охлаждающие трубы (испарительная часть), 2) конденсаторный блок. Охлаждающие трубы размещены в основании сооружения. Служат для циркуляции хладагента и замораживания грунта. Конденсаторный блок располагается над поверхностью грунта и соединяется с испарительной частью. Конденсаторный блок может быть удален от объекта до 100 м.

Система ГЕТ работает без электроэнергии в автоматическом естественном режиме. В зимний период в охлаждающих трубах происходит перенос тепла от грунта к хладагенту. Хладагент переходит из жидкой фазы в парообразную. Пар перемещается в сторону конденсаторного блока, где снова переходит в жидкую фазу, отдавая тепло через оребрение в атмосферу. Охлажденный и сконденсированный хладагент вновь стекает в испарительную систему и повторяет цикл движения. Конденсаторный блок заправляется на заводе необходимым количеством хладагента, достаточным для заполнения всей системы. Рабочее давление в системах составляет не более 4 атм.

Вертикальные естественнодействующие трубчатые (ВЕТ) системы:

Система ВЕТ - аналог системы ГЕТ, усиленный вертикальными трубами. Вертикальные трубы размещены в необходимых расчетных точках и соединены с конденсаторным блоком.

Особенность систем ВЕТ и ГЕТ - возможность осуществлять глубинное замораживание грунтов в самых недоступных местах или тех местах, где размещение надземных элементов нежелательно/невозможно. Все охлаждающие элементы расположены ниже поверхности грунта.

Системы ВЕТ и ГЕТ предназначены для эффективного поддержания заданного температурного режима вечномерзлых грунтов под фундаментами различных сооружений: резервуаров до 100 000 м3, автомобильных и железных дорог, зданий шириной до 120 м.

Индивидуальные термостабилизаторы грунтов:

Индивидуальный термостабилизатор выполнен как герметичная неразъемная сварная конструкция полной заводской готовности, заправленная хладагентом, с подземной испарительной частью и надземной конденсаторной.

Термостабилизатор устанавливается вертикально либо наклонно под углом до 45 градусов к вертикали, в непосредственной близости от нижнего конца свай в основаниях. Испарительная часть термостабилизатора находится в грунте и имеет защитное цинковое покрытие.

Предназначены для охлаждения талых и пластичномерзлых грунтов под зданиями с проветриваемым подпольем и без него, под эстакадами трубопроводов и для других сооружений с целью повышения их несущей способности. Применяются также для предупреждения выпучивания свай.

Общая длина индивидуального термостабилизатора 6-21 м, глубина подземной части – до 20 м, высота надземной конденсаторной части с алюминиевым оребрением - до 3 м.

Глубинные сезоннодействующие охлаждающие устройства:

Глубинное сезоннодействующее охлаждающее устройство (СОУ) – это герметичная неразъемная сварная конструкция, заправленная хладагентом.

В качестве хладагента для глубинных СОУ используется углекислота. Она заполняет всю промораживаемую высоту СОУ. Интенсивная циркуляция обеспечивается применением специальных внутренних устройств.

Глубина подземной части, в зависимости от объекта замораживания, может достигать 100 м. Высота надземной конденсаторной части - до 5 м.

Глубинные СОУ предназначены для замораживания и температурной стабилизации грунтов плотин, устьев скважин с целью обеспечения их эксплуатационной надежности, автомобильных дорог, замораживания локальных талых зон.

Примечание: © Фото https://www.pexels.com, https://pixabay.com, http://www.npo-fsa.ru. Видео https://www.youtube.com/channel/UCc1o05Hz9mZQJ-VFl6YleIg. Фото и видео предоставлено ООО НПО «Фундаментстройаркос», http://www.npo-fsa.ru.


установка термостабилизаторов грунтов у тепловых камер теплосети
термостабилизаторы грунтов в условиях вечной мерзлоты монтаж цена купить тсг схема производство паяльника соу тк32 принцип работы пвх своими руками производство последние патенты

Коэффициент востребованности 1 546

Предназначены для охлаждения (замораживания) грунтов в целях повышения их несущей способности, а так же для обеспечения устойчивости, эксплуатационной надежности любых видов оснований.

Область применения

  • при строительстве, эксплуатации и ремонте объектов нефте- и газотранспортных систем;
  • обустройство нефтяных и газовых месторождений, а так же опор надземных трубопроводов;
  • при строительстве, эксплуатации и ремонте объектов транспортного строительства, ЛЭП и столбов освещения;
  • при строительстве железных и автодорог, мерзлотных завес, водозаборов, дамб, ледовых островов, дорог, переправ и других сооружений промышленного и гражданского назначения в условиях криолитозоны.

Термостабилизаторы грунтов представляют собой металлическую герметично заваренную, заправленную хладагентом трубу диаметром от 32 до 57мм, длиной от 6 до 16м и более. Состоит из конденсатора с оребрением (надземной части длиной в пределах 1-2,5 метра) и испарителя (подземной части длиной от 5 до 15 м и более).

Материал оребрения конденсатора - алюминий. Количество ребер на 1м/п около 400 штук, шаг оребрения 2,5 мм, диаметр оребрения - 64 и 70 мм, высота ребер до 15 мм. Площадь теплообмена 1 м/п оребрения составляет до 2,2м².

Работа осуществляется без внешних источников питания, только за счет законов физики - переноса тепла вследствие испарения в испарителе хладагента и его поднятия в конденсаторную часть, где пар конденсируется, отдавая тепло, а затем стекает по внутренним стенкам трубы вниз.

Термостабилизаторы подразделяются на два вида исполнения: односекционные и многосекционные.

Технология термостабилизации мерзлых грунтов оснований и фундаментов, является эффективной мерой по защите мерзлых грунтов (ММГ) от деградации. Применение технологии термостабилизации позволяет защитить ММГ от воздействия близкорасположенных тепловыделяющих объектов, создать в зимнее время переправы, дороги и ледовые острова для бурения скважин.

Выбор технологии (способов) активной термостабилизации грунтов, а также типов и моделей ТС определяется конструктивными особенностями зданий, сооружений и технологическими особенностями их строительства и эксплуатации. ОУ и ТС являются автономными холодильными устройствами, работающими за счет низких температур атмосферного воздуха в холодное время года и не требующими в процессе эксплуатации никаких затрат.

ООО НПО «Фундаментстройаркос» - крупнейшее предприятие в России по производству систем температурной стабилизации вечномерзлых грунтов. Производственные мощности компании, не имеют мировых аналогов, как по технологичности изготовления, так и по объемам выпускаемой продукции.

Производимость продукции в месяц достигает до 10 000 индивидуальных термостабилизаторов и 100 систем ГЕТ/ВЕТ. Производственные площади компании составляют 17 150 кв.м.

При изготовлении сезоннодействующих охлаждающих устройств в производственном комплексе НПО «Фундаментстройаркос» применяются новые, прогрессивные технологии, что обеспечивает качество и эффективность их работы.

АВТОМАТИЧЕСКАЯ СВАРКА СТАЛЬНЫХ ТРУБ

Надежность криогенных устройств, заполненных хладагентом, их способность служить не один десяток лет зависят, в первую очередь, от герметичности конструкции, то есть от качества сварочных швов. С целью сведения к минимуму влияние человеческого фактора на качество сварных соединений, в НПО «Фундаментстройаркос» применяется автоматическая контактно - стыковая сварка дугой, вращающейся в магнитном поле. Диаметр свариваемых стальных труб от 33,7 до 89 мм.

Преимущества автоматической сварки вращающейся дугой:

  • высокая производительность (продолжительность сварки до 15 сек);
  • абсолютная герметичность сварного соединения;
  • равнопрочность сварного шва и тела трубы;
  • минимальная высота наружного и внутреннего грата;
  • отсутствие необходимости неразрушающего контроля сварных швов;
  • высокая степень автоматизации.

Компьютерный контроль параметров сварки при изготовлении термостабилизаторов выполняется в 100% объеме, оператором и отделом технического контроля.

После сварки каждого сварного шва на мониторе компьютера автоматически выводятся данные о сваренном стыке, затем отображается заключение о годности или негодности стыка.

Наряду с компьютерным контролем сварных швов выполняется визуально-измерительный контроль (ВИК), и периодические механические испытания на разрыв и изгиб.

РОБОТИЗИРОВАНЫЙ СВАРОЧНЫЙ КОМПЛЕКС

Для автоматизации процесса сварки теплоотдающих элементов конденсаторных блоков применяется роботизированный сварочный комплекс с числовым программным управлением.

Это уникальное оборудование позволяет выполнять автоматическую сварку плавящимся электродом в среде защитных газов и смесях. Сварочные горелки установлены на двух манипуляторах, и позиционируются в пространстве с шестью степенями свободы. Сварка производится двумя горелками одновременно по предварительно заданной оператором программе.

Надежные источники сварки вместе с оригинальной системой ЧПУ обеспечивают повторяемость геометрии сварных швов и их качество, при минимальном воздействии на сварку человеческого фактора.

ОЦИНКОВАНИЕ

Повысить надежность и увеличить срок эксплуатации охлаждающих устройств до 50 лет позволяет использование цинкового покрытия труб и деталей, особенно находящихся в подземной части.

Автоматическая линия по нанесению защитного цинкового покрытия состоит из 4 участков: подготовка труб, обезжиривание, дробеструйная обработка и нанесение цинкового покрытия методом газотермической электродуговой металлизации.

Цинковое покрытие помимо коррозионной стойкости в грунте значительно сокращает температурные потери, что позволяет понизить температуру грунта дополнительно на 2-3 С.

ОРЕБРЕНИЕ

Важнейшей составной частью систем термостабилизации грунтов является быстрая и стабильная теплоотдача от конденсаторной части.

Для скорейшего отвода тепла и конденсации хладагента в ООО НПО «Фундаментстройаркос» применяются оригинальные биметаллические конструкции с оребренной поверхностью, имеющие преимущества перед разработками конкурентов. Бóльшая площадь поверхности оребрения дает существенное увеличение теплоотдачи. Кроме того, применяются алюминиевые сплавы с коэффициентом теплопроводности в 4 раза больше, чем у стали с лакокрасочным покрытием, используемых конкурентами.

Оригинальная конструкция оребренной конденсаторной части обеспечивает ее эффективную работу при любом направлении ветра или воздушного потока принудительного охлаждения.

АВТОМАТИЧЕСКАЯ ЗАПРАВКА ХЛАДАГЕНТОМ

Процесс заправки термостабилизаторов хладагентом доведен до полной автоматизации, со 100% компьютерным контролем. Одним из направлений по увеличению эффективности работы термостабилизирующих систем является применение «чистых» хладагентов со степенью очистки от примесей (воды и не конденсирующих газов) 100 %.

Проведенные исследования показали, что даже 0,2 % примесей в углекислоте могут существенно повлиять на работу термостабилизаторов. Для выполнения доотчистки углекислоты в НПО «Фундаментстройаркос» изготовлена и запущена в работу 4-х ступенчатая установка очистки углекислоты, позволяющая уйти от использования СО2 в состоянии поставки и получить 100-ую степень очистки.

ИСПЫТАНИЕ ТЕРМОСТАБИЛИЗАТОРОВ В КЛИМАТИЧЕСКОЙ КАМЕРЕ

Особенно важным этапом в производстве индивидуальных термостабилизаторов - испытание готовых охлаждающих устройств на работоспособность в специальных климатических камерах.

Ежесменное проведение испытаний позволяет еще на этапе производства оценивать последующую эффективность работы термостабилизаторов, при этом сразу же исключить неработоспособные устройства, ранее это можно было сделать только после монтажа охлаждающих устройств.

Климатическая камера позволяет проводить научно-исследовательские работы по улучшению и модернизации термостабилизаторов. Установка оснащена контрольно-измерительными приборами, которые обеспечивают автоматический сбор данных с экспериментального термостабилизатора.

ЛАЗЕРНАЯ РЕЗКА И ГИБКА ЛИСТОВЫХ МАТЕРИАЛОВ

ООО НПО «Фундаментстройаркос» располагает собственными производственными мощностями по обработке листового металла и стальных труб. Используется высокотехнологичное швейцарское оборудование с числовым программным управлением.

Установка лазерной и плазменной резки для обработки листового металла позволяет качественно и быстро выполнять промышленную резку деталей различной конфигурации. Листогибочный пресс с усилием гибки 250 т и технологией гибки листа «по трем точкам» обеспечивает точность гибки (0,25 градуса) на готовой детали за 15 минут.

ПЛАЗМЕННАЯ РЕЗКА СТАЛЬНЫХ ТРУБ И ЛИСТОВОГО МЕТАЛЛА

5-осевые установки плазменной резки труб дают возможность качественно и быстро подготавливать заготовки стальных труб под сборку и сварку.

При одной установки получаем готовую деталь с вырезанными отверстиями под арматуру, уже с фаской. Отрезка детали производится как под прямым углом, так и со скосом под сварку. Разметка, сверление, снятие фаски вручную - исключены, время изготовления деталей сокращается минимум в 2 раза.

Диаметр обрабатываемых труб 40…430 мм. Длина обрабатываемой трубы до 6000 мм.

УПАКОВКА И ТРАНСПОРТИРОВКА

Каждое грузовое место с продукцией «Фундаментстройаркоса» до отгрузки потребителю проходит следующие контрольные операции:

  • контроль продукции перед ее укладкой в упаковку;
  • контроль качества изготовления ящиков и крышек до укладки;
  • контроль укладки продукции в упаковку;
  • контроль качества изготовления упаковки в собранном виде (с продукцией внутри);
  • контроль маркировки упаковки, нанесения АКП, наличия сопроводительной документации.

Качественное упаковывание готовой продукции, исключающее ее повреждение при перевозках – существенное преимущество «Фундаментстройаркоса» перед конкурентами. Термостабилизаторы и системы ГЕТ/ВЕТ доставляются из Тюмени на строящиеся объекты всеми видами транспорта.

При поставке в районы Крайнего Севера часто применяется комбинированная логистика:

  • по железной дороге с перегрузкой на автотранспорт;
  • автотранспортом и далее авиаперевозка;
  • по железной дороге с перевалкой на баржи, и далее авиаперевозка, либо автотранспортом по зимнику;
  • любые другие варианты, предусматривающие не только погрузку - выгрузку, но и сложные перевалочные операции.

Поэтому оригинальные конструкции и схемы упаковок ООО НПО «ФСА» исключают внешнее воздействие на груз и смещение упакованной продукции в процессе транспортирования и погрузочно - разгрузочных работ. Все ящики промаркированы с указанием центра тяжести, мест строповки. Внутри ящиков груз надежно закреплен, предусмотрены воздействия толчков и соударений (ж/д перевозки), неровные дороги и зимники, возможные ошибки сторонних организаций при сложной логистике.

Термостабилизация грунтов

Последние десятилетия отмечается рост температуры вечномерзлых грунтов. Это вызывает риски возникновения запроектных напряженно-деформированных состояний грунтов оснований, фундаментов, зданий и сооружений, возводимых на таких грунтах.

Эта серьезная проблема с каждым годом затрагивает все большее число объектов, эксплуатируемых на основаниях, сложенных вечномерзлыми грунтами (происходят неравномерные осадки, просадки фундаментов, разрушение элементов конструкций и т.д.).

Возведение зданий и сооружений на вечномерзлых грунтах ведется по двум принципам:

Первый принцип основывается на сохранении вечномерзлого состояния грунтов на период всей эксплуатации здания или сооружения;

Второй принцип подразумевает использование грунтов в качестве оснований в оттаянном или оттаивающем состоянии (производится предварительное оттаивание на расчетную глубину до начала строительства или допускается оттаивание в период эксплуатации;

Выбор принципа зависит от инженерно-геокриологической обстановки. Необходимо учесть и сравнить целесообразность принципов. Первый принцип подразумевает, что выгоднее поддерживать грунты в мерзлом состоянии, чем усилять оттаявшие грунты.

Второй принцип больше подходит, когда оттаивание грунтов приводит к деформациям грунтов оснований, которые находятся в области допустимых значений для конкретного здания или сооружения. Этот принцип, например, подходит для скальных и твердомерзлых грунтов, деформации которых невелики в оттаянном состоянии.

Термостабилизация грунтов

Термостабилизация мерзлых грунтов призвана обеспечить возможность возведения зданий и сооружений по второму принципу.

Для поддержания грунтов в мерзлом состоянии применяется ряд мер. Одним из эффективных и экономически целесообразных методов является понижение температуры грунтов с помощью термостабилизаторов .

Термостабилизатор грунтов (ТСГ) представляет из себя парожидкостный сифон. Это заправленное хладагентом сезоннодействующее охлаждающее устройство для понижения температуры грунтов.

ТСГ погружают в пробуренные скважины рядом с фундаментом для понижения температуры массива грунта, являющуюся основанием фундамента. Часть устройства представляет из себя испаритель, забирающий тепло из грунтов, и конденсатор, отдающий тепло в окружающую атмосферу.

В термостабилизаторе происходит естественная конвекционная циркуляция хладагента, который переходит из одного агрегатного состояния в другое: из газа в жидкость и обратно.

Сконденсировавшийся хладагент (сжиженный аммиак или диоксид углерода) естественным образом под действием разности температур опускается в нижнюю часть ТСГ к грунтам. После, забрав от них тепло, превращается в пар и, испаряясь, возвращается на поверхность, где снова передает тепло окружающему воздуху через стенки радиатора-конденсатора, конденсируется. После цикл повторяется снова.

Циркуляция хладагента может быть ествественной конвекционно-гравитационной или принудительной. Это зависит от конструкции термостабилизатора.

Тип, конструкция и количество термостабилизаторов подбираются на основе индивидуальных расчетов для каждого объекта.

Термостабилизаторы показали свою эффективность, - с их помощью удается поддерживать грунты в вечномерзлом состоянии и обеспечивать прочность и неизменность льдогрунтовой плиты под сооружением.

Конвекционная циркуляция хладагента основывается на градиенте температур грунтов и наружного воздуха.

Во время летнего периода, как

только температура конденсатора - верхней, находящейся в атмосфере части термостабилизатора,

становится выше температуры теплоносителя,

циркуляция прекращается и процесс приостанавливается с частичным инерционным оттаиванием верхнего слоя грунта до следующего похолодания.

Схемы установок по способу монтажа и конструкции:

Одиночный скважинный термостабилизатор (ОСТ)

Наиболее простое устройство, позволяющее проводить монтажные работы как для строящихся, так и для существующих зданий и сооружений. ОСТ допускается устанавливать как вертикально, так и под углом наклона 45 градусов к поверхности;

Горизонтальная система термостабилизаторов (ГСТ) представляет из себя систему труб-испарителей, расположенных в одной горизонтальной плоскости в массиве грунта, являющегося основанием фундамента. Хладагент из труб испарителя переносится к конденсатору, расположенному на поверхности. Устройство ГСТ целесообразно при новом строительстве, когда возможно устройство котлована;

Вертикальная система термостабилизаторов (ВСТ) сочетает в себе горизонтальную систему, к трубам-испарителям, которой присоединены вертикальные трубы-испарители, уходящие вглубь массива грунта. Эта конструкция позволяет замораживать грунты на большую глубину, чем по схеме ГСТ. Устройство ВСТ целесообразно при новом строительстве, когда возможно устройство котлована;

Система термостабилизаторов, устанавливаемых в основание существующего здания или сооружения с помощью наклонно-направленного бурения.

Последний метод не требует разработки котлованов, траншей, укрепления, позволяет сохранить естественную структуру грунтов. Допустимо устройство системы термостабилизации грунтов параллельно со строительством самого здания или сооружения, что ускоряет процесс строительства.

Технико-экономические показатели при применении термостабилизации грунтов

Термостабилизация грунтов с помощью различных систем ТСГ позволяет снизить стоимость строительства до 50% и сократить срок строительства объектов почти в 2 раза.

"Термостабилизация грунтов" (скачать в PDF формате)

Все права защищены, 2014-2030.

Копирование информации с данного сайта допускается только со ссылкой на http://сайт

Предложения, размещенные на данном интернет-сайте, не являются публичной офертой.